写点什么

苹果研究人员提出集成反演技术,可从不同机器学习模型中重建训练数据

  • 2021-12-07
  • 本文字数:1473 字

    阅读完需:约 5 分钟

苹果研究人员提出集成反演技术,可从不同机器学习模型中重建训练数据

MI 攻击


近几年,模型反演(Model inversion, MI)攻击备受关注。MI 攻击是指滥用经过训练的机器学习(ML)模型,并借此推断模型原始训练数据中的敏感信息。遭受攻击的模型经常会在反演期间被冻结,从而被攻击者用于引导训练生成对抗网络之类的生成器,最终重建模型原始训练数据的分布。


因此,审查 MI 技术对正确建立模型保护机制至关重要。


借助单一模型高质量地重建训练数据的过程非常复杂,然而,现有的 MI 相关文献并没有考虑到多个模型同时被攻击的可能性,这类情况中攻击者可以找到额外的信息和切入点。


如果攻击成功,原始训练样本泄露,而其训练数据中如果包含个人的身份信息,那么数据集中的数据本体的隐私将会受到威胁。

集成反演技术


苹果的研究人员提出了一种集成反演的技术,借助生成器来估计模型原始训练数据的分布,而该生成器则被限制在一系列共享对象或实体的训练模型之中。


对比使用单一机器学习模型的 MI,使用该技术生成的样本质量得到了显著的提升,并具备了区分数据集实体间属性的能力。这证明了如果借助与预期训练结果相类似的辅助数据集,可以在不使用任何数据集的情况下依旧可以得到高质量结果,改善反演的结果。通过深入研究集成中模型多样性对结果的影响,并添加多重限制以激励重建样本获得高精确度和高激活度,训练图片的重建准确程度得到了提升。


对比针对单一模型的 MI 攻击,该研究所提出的模型在重建性能上展现了明显的提升。该研究不仅利用最远模型采样法(FMS)进行集成中模型多样性的优化,还创建了一个模型间等级对应关系明确的反演集成,模型的输出向量中的增强信息也被用来生成更优的限制条件,以更好地确定目标质量的高低。


通过随机训练的形式,小批量随机梯度下降(SGD)这类的主流动态卷积神经网络(DCNN),可以使用任意的大型数据集进行训练。DCNN 模型对训练数据集中最初的随机权重和统计上的噪音非常敏感,而由于学习算法的随机性,同一训练集可能会生成侧重特征不同的模型。因此,为减少差异性,研究者一般会使用集成学习,一种简单的技巧来提升 DCNN 辨别式训练的性能。



虽然这篇论文是以集成学习为基础进行的研究,但论文对“集成”一词却有不同的定义。


若想成功对模型进行反演,攻击者不能假定目标模型一定是通过集成学习进行训练的,但他们却可以通过搜集有关联的模型搭建一个攻击模型的集成。换句话来说,在“集成反演攻击”这个语境下,“集成”不是要求模型一定要经过集成训练,而是指攻击者从各种来源所收集到相关模型的集合。


举例来说,研究者可以通过不断收集新的训练数据,对当前模型进行训练并更新结果,而攻击者则可以将这些模型收集为一个集合并加以利用。


借助该策略,无数据的 MNIST 手写数字的反演准确率提升了 70.9%,而基于辅助数据的试验准确率则提高了 17.9%;对比基准实验,人脸反演的准确率提升了 21.1%。论文的目标是,以更系统的方式对现有模型反演策略进行评估。在未来的研究中,需以针对这类集成的模型反演攻击开发相应的保护机制为重点。

结论


论文中提出的集合反演技术,可以利用机器学习模型集合中的多样性特质提升模型反演的性能表现;通过结合 one-hot 损失和最大化输出激活损失函数,让样本质量得到了更进一层的提升。除此之外,过滤掉攻击模型中含有较小最大化激活的生成样本也可以让反演表现更加突出。同时,为确定目标模型的多样性对集合反演性能的影响,研究者深入探索研究了各种差异下目标模型的表现情况。


论文原文:利用集成反演从各类机器学习模型中重建训练数据


英文原文Apple Researchers Propose A Method For Reconstructing Training Data From Diverse Machine Learning Models By Ensemble Inversion

2021-12-07 10:262059

评论

发布
暂无评论
发现更多内容

mac端好用的Java开发分析 JProfiler 13 激活中文版附密钥

胖墩儿不胖y

Mac Mac 软件 Java开发分析工具 Java分析

软件测试 | 查看隐藏表单域

测吧(北京)科技有限公司

测试

数跨新阶,原生新纪 | 2023 数字化转型发展大会蓄力启航

信通院IOMM数字化转型团队

数字化转型 大会 IOMM 数字化转型峰会

注册与充值操作手册

zhizhi

AI azure openai AIGC zhizhi

产品经理:实现一个微信输入框

南城FE

JavaScript 微信 前端 交互 输入框

SpringBoot3集成RocketMq

RocketMQ springboot SpringBoot3

Spring Cloud OpenFeign - 远程调用

java易二三

Java spring 程序员 计算机 科技

软件测试 | 使用TamperData观察实时的响应头

测吧(北京)科技有限公司

测试

[BitSail] Connector开发详解系列三:SourceReader

字节跳动数据平台

大数据 数据治理 数据研发 企业号 8 月 PK 榜

搜文本搜位置搜图片,1小时玩转Elasticsearch

阿里云大数据AI技术

WPS Office AI实战总结,智能化办公时代已来

MavenTalker

Microsoft 365 Copilot WPSAI

软件测试 | 使用以URL方式编码的数据

测吧(北京)科技有限公司

测试

软件测试 | 计算散列值

测吧(北京)科技有限公司

测试

分布式可视化 DAG 任务调度系统 Taier 的整体流程分析

袋鼠云数栈

大数据 开源 Taier

ARTS 打卡第 1 周: Jackson如何自定义属性的序列化策略

前行

#Jackson #正则表达式 #IDEA高效使用技巧

高级插图和绘图 VectorStyler for Mac激活包

mac大玩家j

Mac Mac 软件 绘图工具 绘画软件

从0开始学Java——抛出和声明异常的代码实现

java易二三

Java 程序员 计算机 科技

Presto 设计与实现(二):一切从 0 开始?

冰心的小屋

数据湖 presto presto 设计与实现

数据安全架构总结及案例分享

I

安全架构师 架构设计 数据安全 安全架构

【直播合集】HDC.Together 2023 精彩回顾!收藏勿错过~

HarmonyOS开发者

HarmonyOS

CutLER:一种用于无监督目标检测和实例分割的方法

华为云开发者联盟

人工智能 华为云 华为云开发者联盟 企业号 8 月 PK 榜

软件测试 | 使用WebScarab观察实时的POST数据

测吧(北京)科技有限公司

测试

零代码搭建一个微信小程序

华为云开发者联盟

开发 华为云 华为云开发者联盟 企业号 8 月 PK 榜

直播平台开发协议分析篇(一):会话初始化协议SIP

山东布谷科技

软件开发 SIP 源码搭建 直播平台开发 会话初始化协议

零信任体系化能力建设(2):设备风险与安全监控

权说安全

敏捷采购:如何在采购中应用敏捷方法

ShineScrum

敏捷 敏捷采购

软件测试 | web跟踪元素属性

测吧(北京)科技有限公司

测试

软件测试 | 修改特定的元素属性

测吧(北京)科技有限公司

Seamless Roaming with IPQ6010 and IPQ6018: Elevating Industrial-Grade WiFi6 Solutions

wallyslilly

IPQ6010 ipq6018 IPQ6000

苹果研究人员提出集成反演技术,可从不同机器学习模型中重建训练数据_文化 & 方法_Nitish Kumar_InfoQ精选文章