写点什么

Apache Spark 2.0 预览: 机器学习模型持久化

  • 2016-06-02
  • 本文字数:2224 字

    阅读完需:约 7 分钟

在即将发布的 Apache Spark 2.0 中将会提供机器学习模型持久化能力。机器学习模型持久化(机器学习模型的保存和加载)使得以下三类机器学习场景变得容易:

  • 数据科学家开发 ML 模型并移交给工程师团队在生产环境中发布;
  • 数据工程师把一个 Python 语言开发的机器学习模型训练工作流集成到一个 Java 语言开发的机器学习服务工作流;
  • 数据科学家创建多个训练 ML 模型的作业,稍后需要保存和评估。

Spark MLlib 将提供基于 DataFrame 的 API 来支持 ML 持久化。后面将分三部分介绍:概要、代码实例和 MLlib 持久化 API 一些小细节。

概要

ML 持久化关键特色:

  • 支持 Spark 原有的多种开发语言:Scala、Java 和 Python & R;
  • 基于 DataFrame 的 API 几乎支持所有的 ML 算法;
  • 支持单个 ML 模型和多管道 ML 模型;
  • 使用可转换格式分布式保存机器学习模型

学学 API

在 Apache Spark 2.0 中,机器学习组件 MLlib 提供基于 DataFrame 的 API,可实现类似于 Spark 数据源 API 的保存和载入功能,见以前的文章。

作者使用经典的机器学习例子(手写数字识别,使用 MNIST 数据库,MNIST 数据库包含 0 到 9 的手写数字和标注标记数据)来证实 ML 模型保存和加载功能。作者取其它手写数字并鉴别数字是几,完整例子代码见 notebook:加载数据、训练模型和保存以及加载模型。

保存和加载单模型

首先展示如何使用不同编程语言保存和加载同一单模型。作者使用 Python 训练和保存随机森林分类器模型,然后使用 Scala 来加载同一个 ML 模型回来。

复制代码
training = sqlContext.read...  # data: features, label
rf = RandomForestClassifier(numTrees=20)
model = rf.fit(training)

可以简单的调用 save 方法来保存上面训练好的 ML 模型,然后使用 load 方法再加载回来。

复制代码
model.save("myModelPath")
sameModel = RandomForestClassificationModel.load("myModelPath")

这里也可以加载刚才同一个 ML 模型(使用 Python 保存)进入 Scala 或者 Java 应用。

复制代码
// Load the model in Scala
val sameModel = RandomForestClassificationModel.load("myModelPath")

这个工作既可以对小数据量、局部模型(比如,常见的分类模型 K-Means)适用,也可以对海量数据、分布式模型(比如,常见的推荐模型 ALS)。刚加载的模型都包含有相同的参数设置和训练数据,所以即使在不同的 Spark 部署加载同一个模型也会得到相同的预测结果。

保存和加载多管道模型

前面仅仅描述来保存和加载单个 ML 模型,而实际应用中,ML 工作流包含多阶段:从特征提取和转化到模型拟合和优化。MLlib 会提供 Pipeline 来辅助使用者来构建这些工作流。

MLlib 提供使用者保存和加载整个 Pipeline。下面来看下如何来实现:

  • 特征提取:图像数据二值化为 0 和 1(黑和白);
  • 模型拟合:随即森林分类器读取图像数据并预测数字 0 到 9;
  • 优化结果:交叉验证来优化树的深度。
    看下代码:
复制代码
// Construct the Pipeline: Binarizer + Random Forest
val pipeline = new Pipeline().setStages(Array(binarizer, rf))
 
// Wrap the Pipeline in CrossValidator to do model tuning.
val cv = new CrossValidator().setEstimator(pipeline) ...

在这个管道拟合模型前先来展示我们如何保存整个 ML 工作流。这个工作流将在其它 Spark 集群后续被加载。

复制代码
cv.save("myCVPath")
val sameCV = CrossValidator.load("myCVPath")

最后,我们拟合模型管道,保存管道,并在以后进行加载。下面保存了特征抽取、随机森林模型交叉验证的优化以及模型优化对应的统计数据。

复制代码
val cvModel = cv.fit(training)
cvModel.save("myCVModelPath")
val sameCVModel = CrossValidatorModel.load("myCVModelPath")

细节知识点

Python 优化

在 Spark 2.0 中并没有提供 Python 优化功能,Python 不支持保存和加载 CrossValidator 和 TrainValidationSplit 来做模型超参数优化,这个功能将在 Spark 2.1 中实现(SPARK-13786)。但是 Python 还是可以保存 CrossValidator 和 TrainValidationSplit 的结果。例如,我们可以使用 Cross-Validation 优化随机森林模型并保存调试好的优化模型。

复制代码
# Define the workflow
rf = RandomForestClassifier()
cv = CrossValidator(estimator=rf, ...)
# Fit the model, running Cross-Validation
cvModel = cv.fit(trainingData)
# Extract the results, i.e., the best Random Forest model
bestModel = cvModel.bestModel
# Save the RandomForest model
bestModel.save("rfModelPath")

可转换的存储格式

本质上,我们把模型元数据和参数存储为 JSON,数据集存储成 Parquet。这些存储格式是可转换的,并且也能被其它开发库读取。Parquet 文件允许使用者存储小模型(比如,贝叶斯分类)和分布式模型(比如,ALS)。存储路径可以是任意 Dataset/DataFrame 支持的 URI,比如 S3、本地存储等。

跨语言兼容性

机器学习模型可以在 Scala、Java 和 Python & R 间任意存储和加载。但 R 语言有两个局限性:第一,不是所有 MLlib 模型都支持 R 语言,所以不是所有的使用其它语言训练的模型能被 R 语言加载;第二,使用 R 独有的方式的 R 模型格式存储不易被其它语言使用。

结论

随着 Spark 2.0 的即将发布,基于 DataFrame 的 MLlib API 将会提供几乎完善的模型和机器学习管道持久化。机器学习模型持久化在团队间合作、多编程语言 ML 工作流以及迁移模型到生产环境方面相当重要。基于 DataFrame 的 MLlib API 也将最终会成为 Spark 在机器学习方面主要的 API。

查看英文原文: Apache Spark 2.0 Preview: Machine Learning Model Persistence

2016-06-02 18:197061
用户头像

发布了 43 篇内容, 共 28.9 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

请查收!一份2023年程序员不得不看的自救提升指南(彩色终极版)

Java你猿哥

Java 面试 JVM 面经

浅谈测试用例设计 | 京东云技术团队

京东科技开发者

测试 测试用例 测试用例设计 企业号 4 月 PK 榜

15个值得收藏的数据可视化开源工具

2D3D前端可视化开发

数据可视化 数据可视化工具 前端数据可视化 数据可视化设计 数据可视化软件

企业号 5 月 PK 榜,火热开启!

InfoQ写作社区官方

热门活动 企业号 5 月 PK 榜

Matlab实现蚂蚁群算法

Shine

三周年征文

Python面试题

袁袁袁袁满

三周年连更

关于聚合根,领域事件的那点事---深入浅出理解DDD | 京东云技术团队

京东科技开发者

DDD 企业号 4 月 PK 榜 聚合根 领域事件

华为ISDP工单宝应邀参加第十七届工程建设行业信息化发展大会

轶天下事

构建系列之webpack窥探上

江湖修行

前端 Web webpack cli 构建

统一、飞鹤等快消龙头企业,如何抓住未来10年数智化的机遇?

用友BIP

用友iuap 用友技术大会 快消行业

如何创造数据资产价值?如何对内赋能业务运营,对外创造市场价值?

星环科技

数据资产 数据要素流通

第十七届工程建设行业信息化发展大会成功举办,华为工单宝表现亮眼

YG科技

硬核!阿里P8耗时6月打造的架构师速成手册,颠覆你对架构师的认知

Java你猿哥

架构 分布式 ssm 软件架构 架构师

用友iuap 让企业数智化能力深入、让业务价值浅出

用友BIP

用友 用友iuap 用友技术大会 数智底座

字节二面:HashMap线程不安全体现在哪里?

Java你猿哥

Java 线程 ssm 架构师 HashMap底层原理

聊聊「低代码」的实践之路

Java 架构 低代码

大语言模型的本质:会思考的狗、聪明的马和随机鹦鹉

FN0

AIGC 大语言模型

如何在微服务下保证事务的一致性 | 京东云技术团队

京东科技开发者

架构 微服务 事务 一致性 企业号 4 月 PK 榜

企业数据平台建设的基石:构建统一的数据存算能力

星环科技

存算能力

SQL数据库管理:RazorSQL 激活版

真大的脸盆

Mac 数据库管理工具 Mac 软件 数据库软件

华为ISDP数字化现场作业,如何助力电力行业安监风险管控?

YG科技

企业如何两步实现数据资产化?

星环科技

数据资产化

校企共建|阿里云与西安电子科技大学人才培养交流会顺利举行

云布道师

校企合作

华为ISDP数字化现场作业在第十七届工程建设行业信息化发展大会亮相,备受企业瞩目

轶天下事

低代码+智能化,企业数字化提速的又一场革命

科技热闻

Databend Parser 快速入门

Databend

【专栏 03】数据仓库、数据集市、数据湖,你的企业更适合哪种数据管理架构?

星环科技

数据架构

MySQL8.0.32的安装与配置

Java你猿哥

Java MySQL ssm Java工程师

分布式技术剖析

星环科技

分布式

华为ISDP数字化现场作业:数字化转型助力电力行业安监风险管控

轶天下事

电力行业信息化年会 华为解读“低碳、安全、发展”新思路

YG科技

Apache Spark 2.0预览: 机器学习模型持久化_开源_Joseph Bradley_InfoQ精选文章