报名参加CloudWeGo黑客松,奖金直推双丰收! 了解详情
写点什么

Hadoop 中的集群配置和使用技巧

分布式计算开源框架 Hadoop 入门实践(二)

  • 2008-08-07
  • 本文字数:3895 字

    阅读完需:约 13 分钟

── 分布式计算开源框架 Hadoop 入门实践(二)

其实参看 Hadoop 官方文档已经能够很容易配置分布式框架运行环境了,不过这里既然写了就再多写一点,同时有一些细节需要注意的也说明一下,其实也就是这些细节会让人摸索半天。Hadoop 可以单机跑,也可以配置集群跑,单机跑就不需要多说了,只需要按照 Demo 的运行说明直接执行命令即可。这里主要重点说一下集群配置运行的过程。

环境

7 台普通的机器,操作系统都是 Linux。内存和 CPU 就不说了,反正 Hadoop 一大特点就是机器在多不在精。JDK 必须是 1.5 以上的,这个切记。7 台机器的机器名务必不同,后续会谈到机器名对于 MapReduce 有很大的影响。

部署考虑

正如上面我描述的,对于 Hadoop 的集群来说,可以分成两大类角色:Master 和 Slave,前者主要配置 NameNode 和 JobTracker 的角色,负责总管分布式数据和分解任务的执行,后者配置 DataNode 和 TaskTracker 的角色,负责分布式数据存储以及任务的执行。本来我打算看看一台机器是否可以配置成 Master,同时也作为 Slave 使用,不过发现在 NameNode 初始化的过程中以及 TaskTracker 执行过程中机器名配置好像有冲突(NameNode 和 TaskTracker 对于 Hosts 的配置有些冲突,究竟是把机器名对应 IP 放在配置前面还是把 Localhost 对应 IP 放在前面有点问题,不过可能也是我自己的问题吧,这个大家可以根据实施情况给我反馈)。最后反正决定一台 Master,六台 Slave,后续复杂的应用开发和测试结果的比对会增加机器配置。

实施步骤

  1. 在所有的机器上都建立相同的目录,也可以就建立相同的用户,以该用户的 home 路径来做 hadoop 的安装路径。例如我在所有的机器上都建立了/home/wenchu
  2. 下载 Hadoop,先解压到 Master 上。这里我是下载的 0.17.1 的版本。此时 Hadoop 的安装路径就是/home/wenchu/hadoop-0.17.1
  3. 解压后进入 conf 目录,主要需要修改以下文件:hadoop-env.shhadoop-site.xmlmastersslaves。 Hadoop 的基础配置文件是hadoop-default.xml,看 Hadoop 的代码可以知道,默认建立一个 Job 的时候会建立 Job 的 Config,Config 首先读入hadoop-default.xml的配置,然后再读入hadoop-site.xml的配置(这个文件初始的时候配置为空),hadoop-site.xml中主要配置你需要覆盖的hadoop-default.xml的系统级配置,以及你需要在你的 MapReduce 过程中使用的自定义配置(具体的一些使用例如 final 等参考文档)。

以下是一个简单的hadoop-site.xml的配置:

<?xml version="1.0"?><br></br><?xml-stylesheet type="text/xsl" href="configuration.xsl"?><br></br><!-- Put site-specific property overrides in this file. --><br></br><configuration><br></br><property><br></br>   <name>fs.default.name</name>// 你的 namenode 的配置,机器名加端口 <br></br>   <value>hdfs://10.2.224.46:54310/</value><br></br></property><br></br><property><br></br>   <name>mapred.job.tracker</name>// 你的 JobTracker 的配置,机器名加端口 <br></br>   <value>hdfs://10.2.224.46:54311/</value><br></br></property><br></br><property><br></br>   <name>dfs.replication</name>// 数据需要备份的数量,默认是三 <br></br>   <value>1</value><br></br></property><br></br><property><br></br>    <name>hadoop.tmp.dir</name>//Hadoop 的默认临时路径,这个最好配置,如果在新增节点或者其他情况下莫名其妙的 DataNode 启动不了,就删除此文件中的 tmp 目录即可。不过如果删除了 NameNode 机器的此目录,那么就需要重新执行 NameNode 格式化的命令。<br></br>    <value>/home/wenchu/hadoop/tmp/</value><br></br></property><br></br><property><br></br>   <name>mapred.child.java.opts</name>//java 虚拟机的一些参数可以参照配置 <br></br>   <value>-Xmx512m</value><br></br></property><br></br><property><br></br>  <name>dfs.block.size</name>//block 的大小,单位字节,后面会提到用处,必须是 512 的倍数,因为采用 crc 作文件完整性校验,默认配置 512 是 checksum 的最小单元。<br></br>  <value>5120000</value><br></br>  <description>The default block size for new files.</description><br></br></property><br></br></configuration>``hadoop-env.sh文件只需要修改一个参数:

# The java implementation to use. Required.

export JAVA_HOME=/usr/ali/jdk1.5.0_10配置你的 Java 路径,记住一定要 1.5 版本以上,免得莫名其妙出现问题。

Masters 中配置 Masters 的 IP 或者机器名,如果是机器名那么需要在/etc/hosts中有所设置。Slaves 中配置的是 Slaves 的 IP 或者机器名,同样如果是机器名需要在/etc/hosts中有所设置。范例如下,我这里配置的都是 IP:

Masters:<br></br> 10.2.224.46<p> Slaves:</p><br></br> 10.2.226.40<br></br> 10.2.226.39<br></br> 10.2.226.38<br></br> 10.2.226.37<br></br> 10.2.226.41<br></br> 10.2.224.36
4. 建立 Master 到每一台 Slave 的 SSH 受信证书。由于 Master 将会通过 SSH 启动所有 Slave 的 Hadoop,所以需要建立单向或者双向证书保证命令执行时不需要再输入密码。在 Master 和所有的 Slave 机器上执行:ssh-keygen -t rsa。执行此命令的时候,看到提示只需要回车。然后就会在/root/.ssh/下面产生id_rsa.pub的证书文件,通过 scp 将 Master 机器上的这个文件拷贝到 Slave 上(记得修改名称),例如:scp root@masterIP:/root/.ssh/id_rsa.pub /root/.ssh/46_rsa.pub,然后执行cat /root/.ssh/46_rsa.pub >>/root/.ssh/authorized_keys,建立authorized_keys文件即可,可以打开这个文件看看,也就是 rsa 的公钥作为 key,user@IP 作为 value。此时可以试验一下,从 master ssh 到 slave 已经不需要密码了。由 slave 反向建立也是同样。为什么要反向呢?其实如果一直都是 Master 启动和关闭的话那么没有必要建立反向,只是如果想在 Slave 也可以关闭 Hadoop 就需要建立反向。
5. 将 Master 上的 Hadoop 通过 scp 拷贝到每一个 Slave 相同的目录下,根据每一个 Slave 的Java_HOME的不同修改其hadoop-env.sh
6. 修改 Master 上/etc/profile:
新增以下内容:(具体的内容根据你的安装路径修改,这步只是为了方便使用)
export HADOOP_HOME=/home/wenchu/hadoop-0.17.1

export PATH=$PATH:$HADOOP_HOME/bin 修改完毕后,执行source /etc/profile来使其生效。
7. 在 Master 上执行Hadoop namenode –format,这是第一需要做的初始化,可以看作格式化吧,以后除了在上面我提到过删除了 Master 上的hadoop.tmp.dir目录,否则是不需要再次执行的。
8. 然后执行 Master 上的start-all.sh,这个命令可以直接执行,因为在 6 中已经添加到了 path 路径,这个命令是启动 hdfs 和 mapreduce 两部分,当然你也可以分开单独启动 hdfs 和 mapreduce,分别是 bin 目录下的start-dfs.shstart-mapred.sh
9. 检查 Master 的 logs 目录,看看 Namenode 日志以及 JobTracker 日志是否正常启动。
10. 检查 Slave 的 logs 目录看看 Datanode 日志以及 TaskTracker 日志是否正常。
11. 如果需要关闭,那么就直接执行stop-all.sh即可。

以上步骤就可以启动 Hadoop 的分布式环境,然后在 Master 的机器进入 Master 的安装目录,执行hadoop jar hadoop-0.17.1-examples.jar wordcount输入路径和输出路径,就可以看到字数统计的效果了。此处的输入路径和输出路径都指的是 HDFS 中的路径,因此你可以首先通过拷贝本地文件系统中的目录到 HDFS 中的方式来建立 HDFS 中的输入路径:

hadoop dfs -copyFromLocal /home/wenchu/test-in test-in。其中/home/wenchu/test-in是本地路径,test-in是将会建立在 HDFS 中的路径,执行完毕以后可以通过hadoop dfs –ls看到 test-in 目录已经存在,同时可以通过hadoop dfs –ls test-in查看里面的内容。输出路径要求是在 HDFS 中不存在的,当执行完那个 demo 以后,就可以通过hadoop dfs –ls输出路径看到其中的内容,具体文件的内容可以通过hadoop dfs –cat文件名称来查看。

经验总结和注意事项(这部分是我在使用过程中花了一些时间走的弯路):

  1. Master 和 Slave 上的几个 conf 配置文件不需要全部同步,如果确定都是通过 Master 去启动和关闭,那么 Slave 机器上的配置不需要去维护。但如果希望在任意一台机器都可以启动和关闭 Hadoop,那么就需要全部保持一致了。
  2. Master 和 Slave 机器上的/etc/hosts中必须把集群中机器都配置上去,就算在各个配置文件中使用的是 IP。这个吃过不少苦头,原来以为如果配成 IP 就不需要去配置 Host,结果发现在执行 Reduce 的时候总是卡住,在拷贝的时候就无法继续下去,不断重试。另外如果集群中如果有两台机器的机器名如果重复也会出现问题。
  3. 如果在新增了节点或者删除节点的时候出现了问题,首先就去删除 Slave 的hadoop.tmp.dir,然后重新启动试试看,如果还是不行那就干脆把 Master 的hadoop.tmp.dir删除(意味着 dfs 上的数据也会丢失),如果删除了 Master 的hadoop.tmp.dir,那么就需要重新namenode –format
  4. Map 任务个数以及 Reduce 任务个数配置。前面分布式文件系统设计提到一个文件被放入到分布式文件系统中,会被分割成多个 block 放置到每一个的 DataNode 上,默认dfs.block.size应该是 64M,也就是说如果你放置到 HDFS 上的数据小于 64,那么将只有一个 Block,此时会被放置到某一个 DataNode 中,这个可以通过使用命令:hadoop dfsadmin –report就可以看到各个节点存储的情况。也可以直接去某一个 DataNode 查看目录:hadoop.tmp.dir/dfs/data/current就可以看到那些 block 了。Block 的数量将会直接影响到 Map 的个数。当然可以通过配置来设定 Map 和 Reduce 的任务个数。Map 的个数通常默认和 HDFS 需要处理的 blocks 相同。也可以通过配置 Map 的数量或者配置 minimum split size 来设定,实际的个数为:max(min(block_size,data/#maps),min_split_size)。Reduce 可以通过这个公式计算:0.95*num_nodes*mapred.tasktracker.tasks.maximum

总的来说出了问题或者启动的时候最好去看看日志,这样心里有底。

Hadoop 中的命令(Command)总结

这部分内容其实可以通过命令的 Help 以及介绍了解,我主要侧重于介绍一下我用的比较多的几个命令。Hadoop dfs 这个命令后面加参数就是对于 HDFS 的操作,和 Linux 操作系统的命令很类似,例如:

  • Hadoop dfs –ls就是查看 /usr/root 目录下的内容,默认如果不填路径这就是当前用户路径;
  • Hadoop dfs –rmr xxx就是删除目录,还有很多命令看看就很容易上手;
  • Hadoop dfsadmin –report这个命令可以全局的查看 DataNode 的情况;
  • Hadoop job后面增加参数是对于当前运行的 Job 的操作,例如 list,kill 等;
  • Hadoop balancer就是前面提到的均衡磁盘负载的命令。

其他就不详细介绍了。

相关阅读:

  1. 分布式计算开源框架 Hadoop 介绍――分布式计算开源框架 Hadoop 入门实践(一)
  2. Hadoop 基本流程与应用开发――分布式计算开源框架 Hadoop 入门实践(三)

作者介绍:岑文初,就职于阿里软件公司研发中心平台一部,任架构师。当前主要工作涉及阿里软件开发平台服务框架(ASF)设计与实现,服务集成平台(SIP)设计与实现。没有什么擅长或者精通,工作到现在唯一提升的就是学习能力和速度。个人 Blog 为: http://blog.csdn.net/cenwenchu79

参与 InfoQ 中文站内容建设,请邮件至 editors@cn.infoq.com 。也欢迎大家到 InfoQ 中文站用户讨论组参与我们的线上讨论。

2008-08-07 13:3956165

评论

发布
暂无评论
发现更多内容

可观测性成熟度模型介绍(一)

乘云数字DataBuff

火山引擎DataLeap推出两款大模型应用: 对话式检索与开发 打破代码语言屏障

字节跳动数据平台

数据中台 数据治理 数据安全 数据研发 企业号9月PK榜

单日 5000 亿行 / 900G 数据接入,TDengine 3.0 在中国地震台网中心的大型应用

TDengine

tdengine 时序数据库

矩阵起源荣获"2023大数据助力工业经济"年度创新产品

MatrixOrigin

数据库 云原生 HTAP MatrixOrigin MatrixOne

昇腾AI开发者创享日暨昇腾AI创新大赛2023大连区域赛成功举办

彭飞

华为云ROMA Connect行业生态联盟成立,携手共建行业软件合作新生态

华为云PaaS服务小智

云计算 华为云 应用与数据集成

研究了代码质量后,开发效率提升10倍,bug减少20倍!!

飞算JavaAI开发助手

开放原子开发者工作坊|大咖论开源项目的安全之道

开放原子开源基金会

NineData SQL 窗口现已支持深色模式,让开发者长期用眼无忧!

NineData

程序员 SQL开发 NineData

第2期 | 破局 全球项目、精智核算

用友BIP

项目管理

第六周作业

大肚皮狒狒

矩阵起源荣获上海科技创新资金计划项目立项资助

MatrixOrigin

数据库 云原生 HTAP MatrixOrigin MatrixOne

九章云极DataCanvas公司入选人工智能融合发展与安全应用典型案例

九章云极DataCanvas

规模化、可复制的大模型应用——企业知识管家

九章云极DataCanvas

一个 println 竟然比 volatile 还好使? | 京东云技术团队

京东科技开发者

volatile JIT 企业号9月PK榜 println

一文浅谈Mockito使用 | 京东云技术团队

京东科技开发者

测试 Mockito Mock 企业号9月PK榜

支付宝小程序云,智能开放的增长引擎

TRaaS

支付宝小程序 AI 大模型

后端服务之应用预热 | 京东云技术团队

京东科技开发者

JS防抖 抖动 jsf 企业号9月PK榜 应用预热

如何下载和安装 Eclipse?

小齐写代码

集成开发环境(IDE)的用途?

小齐写代码

集成销售和收入计划,打造企业内部的协作共赢

智达方通

数据分析 智达方通 优化流程

九章云极DataCanvas公司智算中心正式落地

九章云极DataCanvas

Vulkan并发机制

江湖修行

android 前端 opengl 渲染 vulkan

交易日均千万订单的存储架构设计与实践 | 京东物流技术团队

京东科技开发者

架构设计 订单系统 存储架构 企业号9月PK榜

Hadoop中的集群配置和使用技巧_DevOps & 平台工程_岑文初_InfoQ精选文章