报名参加CloudWeGo黑客松,奖金直推双丰收! 了解详情
写点什么

使用 Spark Streaming 进行情感分析

  • 2016-05-24
  • 本文字数:2054 字

    阅读完需:约 7 分钟

这里将使用 Twitter 流式数据,它符合所有所需:持续而且无止境的数据源。

Spark Streaming

Spark Streaming 在电子书《手把手教你学习Spark》第六章有详细介绍,这里略过Streaming API 的详细介绍,直接进行程序开发 。

程序开发设置部分

程序开发起始部分需要做好准备工作。

复制代码
val config = new SparkConf().setAppName("twitter-stream-sentiment")
val sc = new SparkContext(config)
sc.setLogLevel("WARN")
val ssc = new StreamingContext(sc, Seconds(5))
System.setProperty("twitter4j.oauth.consumerKey", "consumerKey")
System.setProperty("twitter4j.oauth.consumerSecret", "consumerSecret")
System.setProperty("twitter4j.oauth.accessToken", accessToken)
System.setProperty("twitter4j.oauth.accessTokenSecret", "accessTokenSecret")
val stream = TwitterUtils.createStream(ssc, None)

这里创建一个 Spark Context sc,设置日志级别为 WARN 来消除 Spark 生成的日志。使用sc创建 Streaming Contextssc,然后设置 Twitter 证书来获得 Twitter 网站数据。

Twitter 上现在的趋势是什么?

很容易的能够找到任意给定时刻的 Twitter 趋势,仅仅需要计算数据流每个标签的数目。让我们看下 Spark 如何实现这个操作的。

复制代码
val tags = stream.flatMap { status =>
status.getHashtagEntities.map(_.getText)
}
tags.countByValue()
.foreachRDD { rdd =>
val now = org.joda.time.DateTime.now()
rdd
.sortBy(_._2)
.map(x => (x, now))
.saveAsTextFile(s"~/twitter/$now")
}

首先从 Tweets 获取标记,并计算标记的数量,按数量排序,然后持久化结果。我们基于前面的结果建立一个监控面板来跟踪趋势标签。作者的同事就可以创建一个广告标记(campaigns),并吸引更多的用户。

分析 Tweets

现在我们想增加一个功能来获得用户主要感兴趣的主题集。为了这个目的我们想对 Tweets 的大数据和食物两个不相关的主题进行情感分析。

有几种 API 可以在 Tweets 上做情感分析,但是作者选择斯坦福自然语言处理组开发的库来抽取相关情感。
build.sbt文件中增加相对应的依赖。

复制代码
libraryDependencies += "edu.stanford.nlp" % "stanford-corenlp" % "3.5.1"
libraryDependencies += "edu.stanford.nlp" % "stanford-corenlp" % "3.5.1" classifier "models"

现在,我们通过 Streaming 过滤一定的哈希标签,只选择感兴趣的 Tweets,如下所示:

复制代码
val tweets = stream.filter {t =>
val tags = t.getText.split(" ").filter(_.startsWith("#")).map(_.toLowerCase)
tags.contains("#bigdata") && tags.contains("#food")
}

得到 Tweets 上所有标签,然后标记出#bigdata 和 #food 两个标签。
接下来定一个函数从 Tweets 抽取相关的情感:

def detectSentiment(message: String): SENTIMENT_TYPE然后对 detectSentiment 进行测试以确保其可以工作:

复制代码
it("should detect not understood sentiment") {
detectSentiment("") should equal (NOT_UNDERSTOOD)
}
it("should detect a negative sentiment") {
detectSentiment("I am feeling very sad and frustrated.") should equal (NEGATIVE)
}
it("should detect a neutral sentiment") {
detectSentiment("I'm watching a movie") should equal (NEUTRAL)
}
it("should detect a positive sentiment") {
detectSentiment("It was a nice experience.") should equal (POSITIVE)
}
it("should detect a very positive sentiment") {
detectSentiment("It was a very nice experience.") should equal (VERY_POSITIVE)
}

完整列子如下:

复制代码
val data = tweets.map { status =>
val sentiment = SentimentAnalysisUtils.detectSentiment(status.getText)
val tags = status.getHashtagEntities.map(_.getText.toLowerCase)
(status.getText, sentiment.toString, tags)
}

data 中包含相关的情感。

和 SQL 协同进行分析

现在作者想把情感分析的数据存储在外部数据库,为了后续可以使用 SQL 查询。
具体操作如下:

复制代码
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
data.foreachRDD { rdd =>
rdd.toDF().registerTempTable("sentiments")
}

将 Dstream 转换成 DataFrame,然后注册成一个临时表,其他喜欢使用 SQL 的同事就可以使用不同的数据源啦。

sentiment 表可以被任意查询,也可以使用 Spark SQL 和其他数据源(比如,Cassandra 数据等)进行交叉查询。
查询 DataFrame 的列子:

sqlContext.sql("select * from sentiments").show()## 窗口操作

Spark Streaming 的窗口操作可以进行回溯数据,这在其他流式引擎中并没有。
为了使用窗口函数,你需要 checkpoint 流数据,具体详情见 http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
简单的一个窗口操作:

复制代码
tags
.window(Minutes(1))
. (...)

结论

此列子虽然简单,但是其可以使用 Spark 解决实际问题。我们可以计算 Twitter 上主题趋势。

2016-05-24 17:455190
用户头像

发布了 43 篇内容, 共 29.5 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

第 12 周 系统架构作业

心在那片海

架构师训练营第 2 期 第12周总结

月下独酌

架构师训练营第2期

读《专访朱啸虎》,我学到了什么?

李忠良

学习 写作 投资 创业者 读后感

大作业

ABS

架构师训练营第十二周作业1

韩儿

架构师训练营-大作业二

石子头

架构二期-第十二周作业(1)

浮生一梦

第十二周 2组 架构师训练营第2期

架构师训练营大作业(二)

Bear

架构师训练营第 1 期

28 天带你玩转 Kubernetes-- 第三天(K8s 安装)

Java全栈封神

Kubernetes k8s 28天写作 k8s安装

架构师训练营第 1 期 - 大作业 (一)

wgl

架构师训练营第 1 期

第 12 周 系统架构总结

心在那片海

架构师训练营 week12 学习笔记

花果山

架构师训练营第十二周总结

xiaomao

十二、数据应用(一)

Geek_28b526

精选算法面试-栈

李孟聊AI

算法 堆栈 28天写作

算法:罗马数字转换为整数,RxSwift的好处,git pull问题解决error: cannot lock ref,产品经理新人如何落地 John 易筋 ARTS 打卡 Week 34

John(易筋)

ARTS 打卡计划 算法:罗马数字转换为整数 RxSwift的好处 git pull cannot lock ref 产品经理新人如何落地

架构师训练营第 1 期 - 大作业 (二)

wgl

架构师训练营第 1 期

【架构师训练营 1 期】大作业一

诺乐

【架构师训练营 1 期】大作业二

诺乐

架构师训练营大作业(一)

Bear

架构师训练营第 1 期

Week 12 大数据应用

evildracula

学习 架构

Java并发编程总结

topsion

Java 并发编程 多线程

给我结果

三只猫

28天写作

架构师训练营第十二周作业2

韩儿

漫谈中台系列:《1小时带你深入理解中台》学习整理

程序员架构进阶

架构 中台 技术 探索与实践 28天写作

架构师训练营 week12 课后作业

花果山

SpringMVC学习!

程序员的时光

程序员 28天写作

架构师训练营大作业二

一马行千里

架构师训练营第 1 期

python 变量

赵开忠

Python 28天写作

架构师训练营第 12 周:数据应用(一)

xiaomao

架构师训练营 - 大作业(一)

树森

使用Spark Streaming进行情感分析_语言 & 开发_侠天_InfoQ精选文章