写点什么

Meta 版 ChatGPT 惨遭“开源”?最新大模型 LLaMA 被泄露,已在 GitHub 收获 7k+ 星

  • 2023-03-06
    北京
  • 本文字数:2942 字

    阅读完需:约 10 分钟

Meta版ChatGPT惨遭“开源”?最新大模型LLaMA被泄露,已在GitHub收获7k+星

Meta 的 LLaMA 代码已经和越来越多的开发者见面了,ChatGPT 正式开源还会远吗?

Meta 全新大语言模型 LLaMA 正通过种子公开发放


2 月 24 日,Meta 公司发布了新的大模型系列 —— LLaMA(Large Language Model Meta AI)。Meta 宣称,LLaMA 规模仅为竞争对手 ChatGPT 的“十分之一”,但性能却优于 OpenAI 的 GPT-3 模型。


近日,国外匿名论坛 4chan 泄露了 LLaMA 成品库,并且种子文件被合并到了 Meta Research 的 GitHub 上,同时一些项目维护者给予了批准,目前该项目在 GitHub 已收获 7k+ 个星。



GitHub 链接:


https://github.com/facebookresearch/llama/pull/73/files


对此,网友分成了两个派系:一方认为这次泄露事件是 Meta 方有意为之,另一方则认为只是单纯地被泄露。


网友 yunwal 表示:“Facebook 几乎肯定知道会发生泄密事件。我的猜测是保持模型“受控”是比其他任何事情都更重要的法律保护,以在有人滥用模型的情况下保护自己免受责任。”



网友 ok123456 则猜测:“也许这是 Meta 故意泄露的,以对抗 OpenAI。一些客户认为这是一个更好的模型,它恰好击中了他们以每年 25 万美元的价格出售访问权的商业计划的核心。访问他们的服务一个月可以购买一台能够运行这种泄露模型的机器。Facebook 削弱了一个潜在的新贵竞争对手,以保持当前的大型科技卡特尔稳定。也许这有点阴谋论,但我们生活在大科技和大阴谋的时代。”



也有网友反驳上述观点:“为什么要泄露它,而不是将它与关于开放和民主化 AI 等新闻稿一起发布?”,有网友称:“这根本不是阴谋。另请参阅 IE、Android、Kubernetes……”


目前,Meta 方面暂未对此事做出回应。有 Meta 员工表示:“Meta 员工可能没有注意到或仍在思考如何做出反应,因此 PR 仍在进行中。”


事实上,无论此事是否是 Meta 有意为之,在部分网友看来,LLaMA 原本的设定就是申请之后即可下载,“被公开是迟早的事情”。


与 OpenAI 的 GPT-3 相比,Meta 在一开始就将 LLaMA 定位成一个“开源的研究工具”,该模型所使用的是各类公开可用的数据集(例如 Common Crawl、维基百科以及 C4)。项目组成员 Guillaume Lample 在推文中指出,“与 Chinchilla、PaLM 或者 GPT-3 不同,我们只使用公开可用的数据集,这就让我们的工作与开源兼容且可以重现。而大多数现有模型,仍依赖于非公开可用或未明确记录的数据内容。”


早在上周发布时,Meta 就曾表示,LLaMA 可以在非商业许可下提供给政府、社区和学术界的研究人员和实体工作者,正在接受研究人员的申请。此外,LLaMA 将提供底层代码供用户使用,因此用户可以自行调整模型,并将其用于与研究相关的用例。也就是说,各方贡献者也能参与进来,让这套模型变得越来越好。LLaMA 的官方博文也提到,“后续还需要更多研究,以解决大语言模型中的偏见、有害评论和捏造事实等风险。”


此次非正式开源,或将标志着这些科技巨头们最优秀的大语言模型,正以前所未有的速度进入全球千行百业中,未来将以更丰富的产品形式让用户享受到先进的 AI 技术。

超越 ChatGPT,LLaMA 强在哪里?


根据 Meta 官方发布的消息,LLaMA 是一种先进的基础语言模型,旨在协助研究人员在 AI 相关领域迅速开展工作。


据悉,LLaMA 跟 OpenAI 的 GPT-3 模型差不多,LLaMA 模型是根据世界上二十种最流行的拉丁语和西里尔字母语言文本训练而成的。论文《LLaMA:开放且高效的基础语言模型》(LLaMA:Open and Efficient Foundation Language Models)就将该模型与 GPT、Gopher、Chinchilla 及 PaLM 等同类成果做出了比较。后面这几种模型都用到了广泛的公共数据,但也引入了某些非公开可用或未记录在案的文本数据。LlaMA 则仅使用公开可用的数据集进行训练,所以虽然自身尚未开源,但该模型与开源原则完全兼容。


从某种意义上讲,LLaMA 是对 2022 年 3 月发表的 Chinchilla 模型及其论文《训练计算优化型大模型》(Training Compute-Optimal Large Models)的直接反应。通过加州大学伯克利分校、哥伦比亚大学、芝加哥大学和伊利诺伊大学在 2021 年 1 月合作进行的大规模多任务语言理解(MMLU)基准测试,这篇论文探讨了模型大小、算力预算、令牌数量、训练时间、推理延迟和性能等问题。


论文中的核心观点是,AI 训练与推理的最佳性能未必由大模型的参数量直接决定。相反,增加训练数据并缩小模型体量才是达成最佳性能的前提。这样的训练可能需要更多时间,但也会带来有趣的意外收获 —— 在推理新数据时,小模型的速度更快。为了证明这一点,Chinchilla 的创建者一年前曾建议在 2000 亿个令牌(一个令牌代表一个单词片段)上训练一套具有 100 亿参数的模型。与之对应,LLaMA 的创建者称自己的模型只有 70 亿个参数,且仍在“继续优化中”,但令牌量已经高达 1 万亿。


LLaMA 模型还分别使用 67 亿、130 亿、320 亿和 652 亿几种参数组合进行训练,其中体量较小的两种使用 1 万亿个令牌,后两种较大的使用 1.4 万亿个令牌。Meta Platforms 采取了 2048 个英伟达 Ampere A100 GPU 加速器配合 80 GB HBM2e 内存,使用 1.4 万亿个令牌对规模最大的 LLaMA-65.2B 模型进行了测试,且训练周期为 21 天(每 GPU 每秒 380 个令牌)。


这样的速度并不算快,但 Meta AI 的研究人员表示,LLaMA-13B 模型“在大多数基准测试中都优于 GPT-3,且体积仅相当于后者的 1/139。”而且重点在于,“我们相信该模型有助于推动大语言模型的大众化普及,因为它完全能够在单 GPU 上运行。而且在规模化模型层面,我们的 65B 参数模型也完全能够与 Chinchilla 或者 PaLM-540B 等顶尖大语言模型相媲美。”

与其他同类大模型的性能对比


论文中列出大量性能比较,这里我们挑出几条来感受一下。下图展示了各模型在“常识推理”任务中的零样本性能表现:



零样本意味着利用一种数据训练而成的模型,对另外一种数据类型进行处理,且无需专门针对新类别做重新训练。(这也是大语言模型的强大之处,其具备自动扩展能力。)从表中的粗体部分可以看到,650 亿参数的 LLaMA 达成或超越了除 PaLM-540B 两个实例以外的其他所有模型,而且跟冠军的表现也相当接近。GPT-3 也在其中,其 1750 亿参数的版本虽然表现不错,但准确率也没有特别明显的优势。而且需要注意,GPT-3 的 1750 亿参数相当于 LLaMA-65B 的 2.7 倍。


在另一轮有趣的比较中,Meta Platforms 展示了 LLaMA 在人文、科学、技术与数学、社会科学及其他各领域的多选测试结果。我们来看以下图表:



这里测试的是所谓 5-shot 准确率,也就是对于任何特定问题,源材料都至少对其提及 5 次,(随着每次提及,答案的确定性水平都会提高,这与人类推理的过程非常相似。这反映的是除了确切知晓之外,我们也往往能从多选题中推断出正确答案。)


下图也很重要,展示的是 LLaMA 在不同参数规模下,与 Chinchilla 模型之间的常识推理与问答基准测试差异:



如图所示,LLaMA-33B 和 LLaMA-65B 已经可以与 Chinchilla-70B 模型正面对抗,当令牌数量达到 1 万亿时甚至能够反超。


值得一提的是,在 NaturalQuestions 和 SIQA 问答测试中,这些基础模型都及不了格——准确率过低,甚至距离及格线还有一段距离。各模型在 TriviaQA 测试中的得分在 D+ 到 C- 之间,在 WinoGrande 测试中得到 C- 至 C,在 HellaSwag 测试中得到 C 至 B,在 PIQA 测试中得到 C+ 至 B-。单从成绩来看,现有大语言模型还算不上班里的“尖子生”。

2023-03-06 14:1611584

评论 1 条评论

发布
用户头像
额。
2023-03-07 08:17 · 浙江
回复
没有更多了
发现更多内容

2022年移动应用运营增长洞察白皮书:流量红利消退时代的“破局”之道

科技汇

数据治理新动态:欧盟发布数据治理研究报告,对国内有何影响

雨果

数据治理

Paper Time 回顾|MB2:为自治数据库建立行为模型

OceanBase 数据库

Baklib:分享一些关于建设企业知识管理(KM)的方法

Baklib

Docker 搭建 MySQL 主从复制

宁在春

MySQL Docker 主从复制 7月月更

关于研发效能(41/100)

hackstoic

团队管理

STEPN链游系统开发模式详解(运动赚钱模式)

开发微hkkf5566

论文领读|面向机器翻译的多语言预训练技术哪家强?最新进展一睹为快!

澜舟孟子开源社区

人工智能 自然语言处理 机器学习 后端 机器翻译

物联网技术在物联网产业格局的分布与应用

AIRIOT

低代码 物联网 低代码,项目开发

文档协同工具推荐

Baklib

50个名额限量开放|带着OceanBase年度发布会的消息走来了!

OceanBase 数据库

连续最大和与判断回文

未见花闻

7月月更

Seata 多语言体系建设

SOFAStack

开源项目 seata 开源软件 多编程语言 项目共建

IMPALA2.12环境安装

怀瑾握瑜的嘉与嘉

7月月更

BigQuery和Snowflake谁更适合你?两大数据仓库8个角度逐一对比

雨果

数据中台 数据仓库 DaaS DaaS数据即服务 数据即服务

网易游戏 Flink SQL 平台化实践

Apache Flink

大数据 flink 编程 流计算 实时计算

我有 7种 实现web实时消息推送的方案,7种!

程序员小富

Java springboot websocket 消息系统

百度、阿里、腾讯,谁最先倒下?

雨果

数据中台 数据服务

【Docker 那些事儿】容器监控系统,来自Docker的暴击

Albert Edison

Docker 云计算 Kubernetes 云原生 7月月更

深度遍历:统计最高分的节点数目 🐟

空城机

算法题 7月月更

如何将 NFT 元数据从 IPFS 转移到智能合约中

devpoint

智能合约 NFT Metaverse 7月月更

C2B模式下优惠券架构演进

转转技术团队

Java 架构 Elastic Search

云服务器ECS老用户专享,10余款实例新购低至3.6折

阿里云弹性计算

阿里云 云服务器 ECS

基于 SPICE 协议的硬编推流整合方案在云游戏中的应用

字节跳动视频云技术团队

视频编解码 云游戏

力扣第三题——无重复字符的最长子串

为自己带盐

力扣

你的技术leader不懂这个?没有它就是没有设计的完成思考过程

田晓亮

方法论 架构设计

Ceph在手天下我有!

穿过生命散发芬芳

Ceph 7月月更

冲刺金九银十!2022最新Java核心知识大全吃透轻松年薪50万

了不起的程序猿

Java java程序员 java面试 java 编程

开源轻量级 IM 框架 MobileIMSDK v6.2 发布

JackJiang

网络编程 Netty 即时通讯 im开发 开源im

Python网页解析库:用requests-html爬取网页

和牛

测试

Meta版ChatGPT惨遭“开源”?最新大模型LLaMA被泄露,已在GitHub收获7k+星_AI&大模型_凌敏_InfoQ精选文章