写点什么

唱吧 DevOps 的落地,微服务 CI/CD 的范本技术解读

  • 2017-03-27
  • 本文字数:7110 字

    阅读完需:约 23 分钟

1、业务架构:从单体式到微服务

K 歌亭是唱吧的一条新业务线,旨在提供线下便捷的快餐式 K 歌方式,用户可以在一个电话亭大小的空间里完成 K 歌体验。K 歌亭在客户端有 VOD、微信和 Web 共三个交互入口,业务复杂度较高,如长连接池服务、用户系统服务、商户系统、增量更新服务、ERP 等。对于服务端的稳定性要求也很高,因为 K 歌亭摆放地点不固定,很多场所的运营活动会造成突发流量。

为了快速开发上线,K 歌亭项目最初采用的是传统的单体式架构,但是随着时间的推移,需求的迭代速度变得很快,代码冗余变多,经常会出现牵一发动全身的改动。重构不但会花费大量的时间,而且对运维和稳定性也会造成很大的压力;此外,代码的耦合度高,新人上手较困难,往往需要通读大量代码才不会踩进坑里。

鉴于上述弊端,我们决定接下来的版本里采用微服务的架构模型。从单体式结构转向微服务架构中会持续碰到服务边界划分的问题:比如,我们有 user 服务来提供用户的基础信息,那么用户的头像和图片等是应该单独划分为一个新的 service 更好还是应该合并到 user 服务里呢?如果服务的粒度划分的过粗,那就回到了单体式的老路;如果过细,那服务间调用的开销就变得不可忽视了,管理难度也会指数级增加。目前为止还没有一个可以称之为服务边界划分的标准,只能根据不同的业务系统加以调节,目前 K 歌亭拆分的大原则是当一块业务不依赖或极少依赖其它服务,有独立的业务语义,为超过 2 个的其他服务或客户端提供数据,那么它就应该被拆分成一个独立的服务模块。

在采用了微服务架构之后,我们就可以动态调节服务的资源分配从而应对压力、服务自治、可独立部署、服务间解耦。开发人员可以自由选择自己开发服务的语言和存储结构等,目前整体上使用 PHP 做基础的 Web 服务和接口层,使用 Go 语言来做长连接池等其他核心服务,服务间采用 thrift 来做 RPC 交互。

2、系统架构的构思与解读

2.1 容器编排

唱吧 K 歌亭的微服务架构采用了 Mesos 和 Marathon 作为容器编排的工具。在我们选型初期的时候还有三个其他选择,Kubernetes、 Swarm、 DC/OS:

  • DC/OS:作为 Mesosphere 公司的拳头产品,基本上是希望一统天下的节奏。所以组件很多,功能也很全面。但是对于我们在进行微服务架构初期,功能过于庞大,学习成本比较高,后期的生产环境维护压力也比较大。
  • Swarm:Docker 公司自己做的容器编排工具,当时了解到 100 个以上物理节点会有无响应的情况,对于稳定性有一些担忧。
  • Kubernetes:Google 开源的的容器编排工具,在选型初期还没有很多公司使用的案例,同时也听到了很多关于稳定性的声音,所以没有考虑。但是在整个 2016 年,越来越多的公司开始在线上使用 Kubernetes,其稳定性逐步提高,如果再选型应该也是个好选择。
  • Mesos:因为了解到 Twitter 已经把 Mesos 用于生产环境,并且感觉架构和功能也相对简单,所以最后选择了 Mesos+Marathon 作为容器编排的工具。

2.2 服务发现

我们采用了 etcd 作为服务发现的组件,etcd 是一个高可用的分布式环境下的 key/value 存储服务。在 etcd 中,存储是以树形结构来实现的,非叶结点定义为文件夹,叶结点则是文件。我们约定每个服务的根路径为 /v2/keys/service/$service_name/,每个服务实例的实际地址则存储于以服务实例的 uuid 为文件名的文件中,比如账户服务 account service 当前启动了 3 个可以实例,那么它在 etcd 中的表现形式则如下图:

当一个服务实例向 etcd 写入地址成功时我们就可以认为当前服务实例已经注册成功,那么当这个服务实例由于种种原因 down 掉了之后,服务地址自然也需要失效,那么在 etcd 中要如何实现呢?

注意,图中的每个文件有一个 ttl 值,单位是秒,当 ttl 的值为 0 时对应的文件将会被 etcd 自动删除。当每个服务实例启动之后第一次注册时会把存活时间即 ttl 值初始化为 10s,然后每隔一段时间去刷新 ttl,用来像向 etcd 汇报自己的存活,比如 7s,在这种情况下基本啥上可以保证服务有效性的更新的及时性。如果在一个 ttl 内服务 down 掉了,则会有 10s 钟的时间是服务地址有效;而服务本身不可用,这就需要服务的调用方做相应的处理,比如重试或这选择其它服务实例地址。

我们服务发现的机制是每个服务自注册,即每个服务启动的时候先得到宿主机器上面的空闲端口;然后随机一个或多个给自己并监听,当服务启动完毕时开始向 etcd 集群注册自己的服务地址,而服务的使用者则从 etcd 中获取所需服务的所有可用地址,从而实现服务发现。

同时,我们这样的机制也为容器以 HOST 的网络模式启动提供了保证。因为 BRIDGE 模式确实对于网络的损耗太大,在最开始就被我们否决了,采用了 HOST 模式之后网络方面的影响确实不是很大。

2.3 监控,日志与报警

我们选择 Prometheus 汇总监控数据,用 ElasticSearch 汇总日志,主要的原因有:

  1. 生态相对成熟,相关文档很全面,从通用的到专用的各种 exporter 也很丰富。
  2. 查询语句和配置简单易上手。
  3. 原生具有分布式属性。
  4. 所有组件都可以部署在 Docker 容器内。

Mesos Exporter,是 Prometheus 开源的项目,可以用来收集容器的各项运行指标。我们主要使用了对于 Docker 容器的监控这部分功能,针对每个服务启动的容器数量,每个宿主机上启动的容器数量,每个容器的 CPU、内存、网络 IO、磁盘 IO 等。并且本身他消耗的资源也很少,每个容器分配 0。2CPU,128MB 内存也毫无压力。

在选择 Mesos Exporter 之前,我们也考虑过使用 cAdvisor。cAdvisor 是一个 Google 开源的项目,跟 Mesos Exporter 收集的信息八成以上都是类似的;而且也可以通过 image 字段也可以变相实现关联服务与容器,只是 Mesos exporter 里面的 source 字段可以直接关联到 marathon 的 application id,更加直观一些。同时 cAdvisor 还可以统计一些自定义事件,而我们更多的用日志去收集类似数据,再加上 Mesos Exporter 也可以统计一些 Mesos 本身的指标,比如已分配和未分配的资源,所以我们最终选择了 Mesos Exporter。

如下图,就是我们监控的部分容器相关指标在 Grafana 上面的展示:

Node exporter,是 Prometheus 开源的项目,用来收集物理机器上面的各项指标。之前一直使用 Zabbix 来监控物理机器的各项指标,这次使用 NodeExporter+Prometheus 主要是出于效率和对于容器生态的支持两方面考虑。时序数据库在监控数据的存储和查询的效率方面较关系数据库的优势确实非常明显,具体展示在 Grafana 上面如下图:

Filebeat 是用来替换 Logstash-forwarder 的日志收集组件,可以收集宿主机上面的各种日志。我们所有的服务都会挂载宿主机的本地路径,每个服务容器的会把自己的 GUID 写入日志来区分来源。日志经由 ElasticSearch 汇总之后,聚合的 Dashboard 我们统一都会放在 Grafana 上面,具体排查线上问题的时候,会用 Kibana 去查看日志。

Prometheus 配置好了报警之后可以通过 AlertManager 发送,但是对于报警的聚合的支持还是很弱的。在下一阶段我们会引入一些 Message Queue 来自己的报警系统,加强对于报警的聚合和处理。

ElastAlert 是 Yelp 的一个 Python 开源项目,主要的功能是定时轮询 ElasticSearch 的 API 来发现是否达到报警的临界值,它的一个特色是预定义了各种报警的类型,比如 frequency、change、flatline、cardinality 等,非常灵活,也节省了我们很多二次开发的成本。

2.4 事务追踪系统——KTrace

对于一套微服务的系统结构来说,最大的难点并不是实际业务代码的编写,而是服务的监控和调试以及容器的编排。微服务相对于其他分布式架构的设计来说会把服务的粒度拆到更小,一次请求的路径层级会比其他结构更深,同一个服务的实例部署很分散,当出现了性能瓶颈或者 bug 时如何第一时间定位问题所在的节点极为重要,所以对于微服务来说,完善的 trace 机制是系统的核心之一。

目前很多厂商使用的 trace 都是参考 2010 年 Google 发表的一篇论文《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》来实现的,其中最著名的当属 twitter 的 zipkin,国内的如淘宝的 eagle eye。由于用户规模量级的逐年提升,分布式设计的系统理念越来越为各厂商所接受,于是诞生了 trace 的一个实现标准 opentracing ,opentracing 标准目前支持 Go JavaScript Java Python Objective-C C++ 六种语言。 由 sourcegraph 开源的 appdash 是一款轻量级的,支持 opentracing 标准的开源 trace 组件,使用 Go 语言开发 K 歌亭目前对 appdash 进行了二次开发,并将其作为其后端 trace 服务(下文直接将其称之为 Ktrace),主要原因是 appdash 足够轻量,修改起来比较容易。唱吧 K 歌亭业务的胶水层使用 PHP 来实现,appdash 提供了对 protobuf 的支持,这样只需要我们自己在 PHP 层实现 middleware 即可。

在 trace 系统中有如下几个概念

(1)Annotation

一个 annotation 是用来即时的记录一个事件的发生,以下是一系列预定义的用来记录一次请求开始和结束的核心 annotation

  1. cs - Client Start。 客户端发起一次请求时记录
  2. sr - Server Receive。 服务器收到请求并开始处理,sr 和 cs 的差值就是网络延时和时钟误差
  3. ss - Server Send: 服务器完成处理并返回给客户端,ss 和 sr 的差值就是实际的处理时长
  4. cr - Client Receive: 客户端收到回复时建立。 标志着一个 span 的结束。我们通常认为一但 cr 被记录了,一个 RPC 调用也就完成了。

其他的 annotation 则在整个请求的生命周期里建立以记录更多的信息 。

(2)Span

由特定 RPC 的一系列 annotation 构成 Span 序列,span 记录了很多特定信息如 traceId, spandId, parentId 和 RPC name。

Span 通常都很小,例如序列化后的 span 通常都是 kb 级别或者更小。 如果 span 超过了 kb 量级那就会有很多其他的问题,比如超过了 kafka 的单条消息大小限制 (1M)。 就算你提高 kafka 的消息大小限制,过大的 span 也会增大开销,降低 trace 系统的可用性。 因此,只存储那些能表示系统行为的信息即可。

(3)Trace

一个 trace 中所有的 span 都共享一个根 span,trace 就是一个拥有共同 traceid 的 span 的集合,所有的 span 按照 spanid 和父 spanid 来整合成树形,从而展现一次请求的调用链。

目前每次请求由 PHP 端生成 traceid,并将 span 写入 Ktrace,沿调用链传递 traceid,每个 service 自己在有需要的地方埋点并写入 Ktrace。举例如下图:

每个色块是一个 span,表明了实际的执行时间,通常的调用层级不会超过 10,点击 span 则会看到每个 span 里的 annotation 记录的很多附加信息,比如服务实例所在的物理机的 IP 和端口等,trace 系统的消耗一般不会对系统的表现影响太大,通常情况下可以忽略,但是当 QPS 很高时 trace 的开销就要加以考量,通常会调整采样率或者使用消息队列等来异步处理。不过,异步处理会影响 trace 记录的实时性,需要针对不同业务加以取舍。

目前 K 歌亭在生产环境里的 QPS 不超过 1k,所以大部分的记录是直接写到 ktrace 里的,只有歌曲搜索服务尝试性的写在 kafka 里,由 mqcollector 收集并记录,ktrace 的存储目前只支持 MySQL。一个好的 trace 设计可以极快的帮你定位问题,判断系统的瓶颈所在。

2.5 自动扩容

在服务访问峰值的出现时,往往需要临时扩容来应对更多的请求。除了手动通过 Marathon 增加容器数量之外,我们也设计实现了一套自动扩缩容的系统来应对。我们扩缩容的触发机制很直接,根据各个服务的 QPS、CPU 占用、内存占用这三个指标来衡量,如果三个指标有两个指标达到,即启动自动扩容。我们的自动扩容系统包括 3 个模块:

  1. Scout:用于从各个数据源取得自动扩容所需要的数据。由于我们的日志全部都汇总在 ElasticSearch 里面,容器的运行指标都汇总到 Prometheus 里面,所以我们的自动扩容系统会定时的请求二者的 API,得到每个服务的实时 QPS、CPU 和内存信息,然后送给 Headquarter。
  2. Headquarter:用于数据的处理和是否触发扩缩容的判断。把从 Scout 收到的各项数据与本地预先定义好的规则进行比对,如果有两个指标超过定义好的规则,则通知到 Signalman 模块。
  3. Signalman:用于调用各个下游组件执行具体扩缩容的动作。目前我们只会调用 Marathon 的 /v2/apps/{app_id}接口,去完成对应服务的扩容。因为我们的服务在容器启动之后会自己向 etcd 注册,所以查询完容器状态之后,扩缩容的任务就完成了。

3、基于 Mesos+Marathon 的 CI/CD

3.1 持续集成与容器调度

在唱吧,我们使用 Jenkins 作为持续集成的工具。主要原因是我们想在自己的机房维护持续集成的后端,所以放弃了 Travis 之类的系统。

在实施持续集成的工作过程中,我们碰到了下列问题:

  1. Jenkins Master 的管理问题。多个团队共享一个 Master,会导致权限管理困难,配置改动、升级门槛很高,Job 创建和修改有很多规则;每个团队用自己的 Master,会导致各个 Master 之间的插件、更新、环境维护有很多的重复工作。
  2. Jenkins Slave 资源分配不平均:忙时 Jenkins slave 数量不足,Job 运行需要排队;闲时 Jenkins Slave 又出现空闲,非常浪费资源。
  3. Jenkins job 运行需要的环境多种多样,比如我们就有 PHP,java,maven,Go,python 等多种编译运行环境,搭建和维护 slave 非常费时。
  4. 多个开发人员的同时提交,各自的代码放到各自独立的测试环境进行测试。

基于以上问题,我们选择使用 Mesos 和 Marathon 来管理 Jenkins 集群,把 Jenkins Master 和 Jenkins Slave 都放到 Docker 容器里面,可以非常有效的解决以上问题。基础架构如下图:

  1. 不同开发团队之间使用不同的 Jenkins Master。把公用的权限、升级、配置和插件更新到私有 Jenkins Master 镜像里面,推到私有镜像仓库,然后通过 Marathon 部署新的 Master 镜像,新团队拿到的 Jenkins Master 就预安装好了各种插件,各个现有团队可以无缝接收到整体 Jenkins 的升级。
  2. 各种不同环境的 Jenkins Slave,做成 Slave 镜像。按照需要,可以通过 Swarm Plugin 自动注册到 Jenkins master,从而组织成 slave pool 的形式;也可以每个 job 自己去启动自己的容器,然后在容器里面去执行任务。
  3. Jenkins job 从容器调度的角度分成两类,如下图:
  • 环境敏感型:比如编译任务,需要每次编译的环境完全干净,我们会从镜像仓库拉取一个全新的镜像启动容器,去执行 Job,然后再 Job 执行完成之后关闭容器。

  • 时间敏感型:比如执行测试的 Job,需要尽快得到测试结果,但是测试机器的环境对于测试结果没什么影响,我们就会从已经启动好的 Slave Pool 里面去拉取一个空闲的 Slave 去执行 Job。然后再根据 Slave 被使用的频率去动态的扩缩容 Slave pool 的大小就好了。

3.2 CI/CD 流程

基于上述的基础架构,我们定义了我们自己的持续集成与持续交付的流程。其中除了大规模使用 Jenkins 与一些自定制的 Jenkins 插件之外,我们也自己研发了自己的部署系统——HAWAII。

在 HAWAII 中可以很直观的查看各个服务与模块的持续集成结果,包括最新的版本,SCM revision,测试结果等信息,然后选择相应的版本去部署生产环境。

在部署之前,可以查看详细的测试结果和与线上版本的区别,以及上线过程中的各个步骤运行的状态。

基于上述基础架构,我们的 CI/CD 流程如下:

  1. SVN 或者 GIT 收到新的代码提交之后,会通过 hook 启动相应的 Jenkins job,触发整个 CI 流程。
  2. Jenkins 从私有镜像仓库拉取相对应的编译环境,完成代码的编译。
  3. Jenkins 从私有镜像仓库拉取相对应的运行时环境,把上一步编译好的产品包打到镜像里面,并生成一个新版本的产品镜像。产品镜像是最终可以部署到线上环境的镜像,该镜像的 metadata 也会被提交到部署系统 HAWAII,包括 GUID,SCM revision,Committer,时间戳等信息
  4. 将步骤 3 中生成的产品镜像部署到 Alpha 环境(该环境主要用于自动化回归测试,实际启动的容器其实是一个完整环境,包括数据容器,依赖的服务等)。
  5. Jenkins 从私有镜像仓库拉取相对应的 UT 和 FT 的测试机镜像,进行测试。测试完成之后,会销毁 Alpha 环境和所有的测试机容器,测试结果会保存到部署系统 HAWAII,并会邮件通知到相关人员。
  6. 如果测试通过,会将第 3 步生成的产品镜像部署到 QA 环境,进行一系列更大范围的回归测试和集成测试。测试结果也会记录到 HAWAII,有测试不通过的地方会从第 1 步从头开始迭代。
  7. 全部测试通过后,就开始使用 HAWAII 把步骤 3 中生成的产品镜像部署到线上环境。

4、小结

随着互联网的高速发展,各个公司都面临着巨大的产品迭代压力,如何更快的发布高质量的产品,也是每个互联网公司都面临的问题。在这个大趋势下,微服务与 DevOps 的概念应运而生,在低耦合的同时实现高聚合,也对新时代的 DevOps 提出了更高的技术与理念要求。

这也是我们公司在这个新的业务线上面进行,进行尝试的主要原因之一。对于微服务、容器编排、虚拟化、DevOps 这些领域,我们一步一步经历了从无到有的过程,所以很多方面都是本着从满足业务的目标来尽量严谨的开展,包括所有的服务与基础架构都进行了高并发且长时间的压力测试。

在下一步的工作中,我们也有几个核心研究的方向与目标,也希望能跟大家一起学习与探讨:

  1. 完善服务降级机制
  2. 完善报警机制
  3. 完善负载均衡机制

作者简介

钮博彦,唱吧高级研发经理,负责唱吧测试开发、持续集成和 DevOps 等工作。从 2007 年开始曾就职于微软中国、雅虎北研等公司。一直专注于提升研发整体质量与效率,以及自动化测试与持续集成的架构设计。

刘宇桐,唱吧研发经理,负责唱吧创新产品部的服务端开发。曾就职于人人网,创新工场。职业猫奴,专注于研究服务端架构及开发流程等相关工作。


感谢木环对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-03-27 17:398329

评论

发布
暂无评论
发现更多内容
唱吧DevOps的落地,微服务CI/CD的范本技术解读_DevOps & 平台工程_钮博彦_InfoQ精选文章