写点什么

Cortana 智能与机器学习博客 将人工智能引入商务智能——Azure Machine Learning 中的文本分析

  • 2017-09-06
  • 本文字数:2112 字

    阅读完需:约 7 分钟

Azure Machine Learning Studio 提供一款瑞士军刀般的出色工具,能够以强大且高效的方式对文本数据集进行操作。举例来说,其中的一套内置模块可应用于语言检测及文本预处理等较低级别任务,用于实现案例标准化、停止词删除、词干提取与词汇化等常见清理步骤。建立在此基础之上的则为更为完整的模块集合,能够通过散列或 TF-IF 等指标将预处理文本转换为 N-gram,同时跳过其中的数字特征。在建立起一组数字特征后,您即可利用 Azure ML 中的任何一套现有学习算法根据需求建立起分类、回归、推荐或者聚类模型。

除了使用 N-gram 功能进行模型训练之外,大家还可以利用一组强大的模块通过预训练模型完成实体与关键词提取等任务,并反过来利用这些提取信息依次构建不同类型的特征。

Azure ML 在自身文本分析功能当中广泛应用强大的 Vowpal Wabbit(简称 VW)库。例如,潜在狄利克雷分析模块即利用 VW 构建主题模型或者大规模数据集。由于 VW 本身拥有大量算法调整选项,因此能够切实满足各类学习任务的需求 ; VM 高级用户亦可在命令行界面当中直接使用我们的打包工具,同时公开全部选项以最大程度实现灵活性。

R 与 Python 语言的开源生态系统还提供一系列不同类型的工具,用于实现不同(或者指向特定领域)格式文本的阅读与解析任务。例如,R 中的 tm 包可执行案例标准化与词干提取等文本预处理任务,Python 中的 NLTK 模块则能够完成从预处理到语音片段标记、再到分类与聚类模型构建等一系列文本分析工作。Azure ML 允许大家在实验过程当中轻松运用这些来自大型生态系统的卓越功能。举例来说,Python 2.7.11 与 3.5 环境就已经预先配置来自 NTLK 的全部语料库与模型。

而这些功能还拥有另一项更为强大的特性,即允许用户以任意方式对其加以给,从而立足文本数据构建起高度灵活的机器学习管道。在 Azure ML 出色操作能力的支持下,您可通过数次点击将这些管道转化为生产就绪型 Web 服务,并利用其完成实时与批量评分。

Power BI 解决方案模板迎来大升级

面对数量如此众多的工具选项,数据科学家该如何构建起一套能够真正解决实际问题的端到端解决方案?

在今天的博文中,我们将讲解为 Power BI 构建必应新闻模板的方法。必应新闻解决方案模板可帮助您根据关注方向,将来自数百家不同消息供应方的相关文章进行匹配。通过构建 Azure 服务自动化管道,其可提供一套交钥匙型解决方案,帮助客户轻松分析新闻内容。这套工作簿的强大之处在于,其能够利用交叉过滤机制将全部许可证分析结果整合在一起。举例来说,在必应新闻模板当中,用户可以选择主题、查看相关关键短语与关联性命名实体,从而快速了解特定主题的要点。将这两种 AI 技术加以组合,不仅构建起一种强大的大型文档库浏览方案,同时亦可帮助您快速发现值得关注的文章。

这套模板中包含四种不同的复杂机器学习技术,将其整合在一起将带来高保真分析结果。模板架构详见以下流程图。

必应新闻模板的核心源自 Azure Logic App——其立足预定时间表(5 分钟)在必应新闻 API 上查看符合用户指定主题的新闻文章。当数据流经 Logic App 时,实际文章文本经通过一系列 Azure 函数完成检索与发送,并可用于进行基础性数据转换。接下来,微软文本分析认知服务则负责对文本正文中的关键短语与情感倾向进行提取。这些文本补充性因素亦可利用“从文本内提取关键短语”模块在 Azure ML 管道部分内获取。到这里,数据以及一些基础性补充信息已经被存储在 Azure SQL 数据库当中。接下来,我们利用另一独立的定期调用 Logic App 调用几项 Azure ML Web 服务——这些服务将负责执行 Vowpal Wabbit 主题聚类与命名实体识别(简称 NER)等复杂任务。这些机器学习输出结果随后会被重新写入至 Azure SQL 数据库,以作为相关数据的最终补充信息。Power BI 能够直接接入该 Azure SQL 数据库,并根据用户对工作簿内容的刷新及时更新自身。以这种方式构建管道允许最终用户根据自身需求实现快速定制,这亦成为其最突出的核心优势。如果部署解决方案模板的客户希望添加其它机器学习标签(例如语言检测),则可轻松插入额外的 Azure ML 或者认知服务以提供额外的补充性元素。

结论

要构建并部署强大的 AI 驱动型应用程序,特别是那些能够利用原始多语言文本数据生成功能的应用,通常要求用户具备深厚的专业知识,将多种可能无法切实协作的工具加以整合,同时具备能够有效处理实体提取等任务的预训练模型。正如我们在本文中所提到,Azure ML 中内置有一套文本分析模块,且能够调用外部工具功能——无论是 NLTK 抑或是微软认知服务,都能够以无缝化方式进行打包并以单一 REST 端点的形式实现部署。正如本文中所提到的 Power BI 必应新闻解决方案模板所示,这样的工作流程将大大减少真实环境下机器学习驱动型应用程序在构建、部署与重新训练等层面的复杂性。

欲了解更多与 Azure ML 中文本分析类应用程序的细节信息,请点击此处访问说明文档页面。在这里,您不仅能够找到更多模块使用指导资料,亦可获得一组完整的端到端示例方案——可用于建立文档分类、相关条目查找以及情感分析模型等等。另外,我们也强烈建议您参阅 Cortana Intelligence Gallery 以了解更多由用户提供的样本,并随时在我们的 MSDN 论坛上发布您的问题。

查看原文链接

2017-09-06 17:161384

评论

发布
暂无评论
发现更多内容

产品经理训练营-第五周学习总结

月亮 😝

翻译:《实用的Python编程》02_04_Sequences

codists

Python 人工智能 面试 数据结构与算法 序列

地表建筑物识别 Dayo2

IT蜗壳-Tango

七日更 28天写作 2月春节不断更

程序员的职业生涯与赛道选择

刘旭东

职业规划 码农 职业生涯

产品经理训练营-第五周作业

月亮 😝

保持前进

Nydia

产品经理训练营 - 第五次作业

Jophie

产品经理训练营

极客大学·产品经理训练营·第四章作业(第五周)

二大爷

极客大学产品经理训练营

面试中经常问到的动态代理到底是什么

废材姑娘

Java

第十三周命题作业

cc

28天瞎写的第二百四十二天:正念冥想,我要想什么?

树上

冥想 28天写作 正念

「产品经理训练营」第五周 作业记录

周玲

Elasticsearch Validate API

escray

elastic 七日更 28天写作 死磕Elasticsearch 60天通过Elastic认证考试 二月春节不断更

将上周写的用例画成流程图-第四章,第三讲

mas

【编程小白福利】办公自动化--从VBA到Python

IT蜗壳-Tango

七日更 28天写作 2月春节不断更 办公自动化 IT蜗壳

流程图

王一凡

处理 Exception 的几种实践,很优雅,被很多团队采纳!

xcbeyond

Java 异常处理 28天写作

2021金三银四必备:Java后端开发面试总结【25个技术专题】

比伯

Java 编程 架构 面试 计算机

深度集成 Flink: Apache Iceberg 0.11.0 最新功能解读

DataFunTalk

框架效应如何影响人的决策?「Day 4」

道伟

心理 决策 28天写作

悟透前端 | javascript数组之includes、reduce

devpoint

ES6 includes reduce

AI数学基础之:奇异值和奇异值分解

程序那些事

人工智能 机器学习 程序那些事 矩阵运算

使用 Tye 辅助开发 k8s 应用竟如此简单(五)

newbe36524

微服务 netcore 全链路追踪 dotnet dapr

第十三周学习心得

cc

一名青少年创客导师

厌倦你

编程

Linux c 开发 - 内存管理器ptmalloc

赖猫

Linux 后台开发 内存管理

改变认知,到写作方式的改变

数列科技杨德华

28天写作

圈子创业

张老蔫

28天写作

作业5

瑾瑾呀

gRPC库C++构建及示例

长不胖的Garfield

c++ gRPC

【计算机内功修炼】九:程序员应如何理解协程

码农的荒岛求生

线程 操作系统 进程 协程

Cortana智能与机器学习博客 将人工智能引入商务智能——Azure Machine Learning中的文本分析_微软_Mary Wahl_InfoQ精选文章