写点什么

Google Play 的应用发现,第 3 部分:使用机器学习打击规模化的垃圾信息和恶意评论

  • 2017-03-07
  • 本文字数:1747 字

    阅读完需:约 6 分钟

InfoQ 此前翻译分享了“Google Play 的应用发现”系列文章中的“了解主题”和“使用相关App 的个性化建议”,本文是该系列的第三部分,主要介绍了Google Play 如何借助机器学习技术来打击规模化的垃圾信息和恶意评论。

在应用发现系列文章的第一部分第二部分中,我们讨论了通过使用机器学习来对App 的相关主题有一个更深入的理解,以及一个深度学习框架来提供个性化推荐服务。本问将讨论借助机器学习技术,来打击Google Play Store 应用中的垃圾信息和恶意行为,从而为10 多亿Android 用户提供一个安全可信任的应用平台。

随着应用逐渐成为人们工作和生活中越来越重要的一部分,我们认识到有至关重要的两点必须得到保证:1) Google Play 找到的App 是安全的, 2) 展现给用户的App 信息是可靠且公正的。我们的目录中已有超过1 百万的App,并且新推出App 的数量每日都在明显增加,所以需要开发可扩展的方法来精准快速地识别劣质App。为解决该问题我们双管齐下,使用多种机器学习技术来帮助打击规模化的垃圾信息和恶意行为。

识别并阻止劣质App 进入Google Play 平台

正如 Google Play 开发者政策中所述,我们不允许上架恶意的、攻击性的或者非法 App。虽然有这样的政策,但依然会有少数破坏分子试图发布欺骗用户的应用。从大量应用目录中发现违反政策的应用并不是件简单的事情,尤其是每天还有数万新应用提交。这就是在评估是否违反政策,以及一个 App 对它的潜在用户可能构成的潜在风险方面,我们拥抱机器学习技术的原因。

我们使用了多种技术,比如基于大型概率网络的词嵌入 (word embedding) 文本分析、使用 Google Brain 的图像理解以及 APK 二进制文件的静态和动态分析。这些独特的技术主要目的是探测具体的违规行为(比如,受限内容、隐私和安全、知识产权、用户欺诈),相比于人工审核这种方式会更加系统化和可靠。被算法标识出的 App,要么退回给开发者要求修复检测到的问题,要么“暂存”到我们可以证明它是安全的,或清除潜在的违规行为。因为这种 App 审核流程结合了专家分析和算法,所以开发者可以在 App 提交后的数小时里就采取必要措施(比如继续迭代或发布)。

图示攻击性内容样本的词嵌入中违反政策的 App(红点)和符合政策的 App(绿点),通过 t-SNE( t-Distributed Stochastic Neighbor Embedding )算法绘制。

阻止操纵应用评分和排名

一个 App 其自身可能是合法合规的,但一些不良分子可能企图通过刷榜来操纵该应用的评分和排名。为了给用户提供一个 App 可感知质量的准确反映,我们在努力消除这些不良企图。然而,在我们制定政策做出努力的同时,操纵行为背后的不良分子也在尝试调整和改变他们的行为策略以绕过我们的政策,从而导致了一个对抗性问题摆在我们面前。

这种情况下,除了使用传统的有监督学习方法(正如我们在本系列的第一部分或第二部分里所介绍的,这是个更加“固定”的问题),还需要开发一个可重复的流程,让我们跟破坏分子一样(至少不亚于他们)敏捷。我们通过使用一种混合策略实现了这一点,该策略使用无监督学习技术生成训练数据,这些数据被依次输入到一个传统有监督学习技术构建的模型。

利用发生在Google Play 平台上的交互、事务和行为数据,我们应用异常检测技术来识别被刷榜党盯上的App。比如,一个可疑App 的所有交互数据可能源自某一个数据中心,而一个有机交互的正常应用其交互数据一般会符合一个正常的来源分布。

接着我们使用这些App 来分离出那些密谋或精心策划来操纵评分和排名的App,还有那些轮流用于训练数据来构建识别相似App 模型的。使用有监督学习技术构建的这个模型,接下来用于扩展覆盖度以及消除Google Play Apps 平台上的刷榜行为。

图示一个通过已知恶意行为App(红色)训练过的模型,如何扩大覆盖度来检测类似的恶意行为App(橙色),同时忽略掉系统用户(蓝色)。

通过支持快速发布同时不对用户安全妥协,我们力争使Google Play 成为开发者和用户的最佳平台。上文提到的机器学习的潜力帮助我们取得了双赢,而且我们会继续在这些技术上做出创新,以确保我们的用户远离垃圾信息和恶意行为。


感谢刘志勇对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-03-07 16:551691

评论

发布
暂无评论
发现更多内容

学生管理系统详细架构文档练习

御道而行

架构实战营

性能测试之问题与思考

刘冉

软件测试 性能测试 软件自动化测试

Vue进阶(幺柒捌):延伸阅读Sass、Scss、Less与Stylus编程特性

No Silver Bullet

CSS Vue 11月日更

外包学生管理系统设计文档

波波

「架构实战营」

今年双 11,阿里业务 100% 上云,云原生有哪些技术亮点?

阿里巴巴云原生

阿里云 技术 云原生 双11

软件测试新趋势-2018

刘冉

软件测试 软件自动化测试

ALB Ingress 发布!轻松应对云原生应用流量管理

阿里巴巴云原生

阿里云 容器 云原生 ALB

linux检测系统是否被入侵(下)

入门小站

Linux

区块链在营销方面的应用探索

石云升

区块链 区块链应用 11月日更

mongoDB 简单的索引类型

liuzhen007

11月日更

如何用20分钟就能获得同款企业级全链路灰度能力?

阿里巴巴云原生

阿里云 微服务 云原生 MSE

测试策略实践之移动应用的测试策略与测试架构

刘冉

软件测试 软件自动化测试 移动测试

一个基于web服务器的PoW案例(二)

Regan Yue

区块链 11月日更 趣讲区块链

Android C++系列:JNI调用时的异常处理

轻口味

c++ android jni 11月日更

架构实战营-模块四

瓜子葫芦侠

「架构实战营」

聊聊开源精神

baiyutang

11月日更

自动化测试之框架分类与思考

刘冉

软件测试 自动化测试

进击的Java(五)

ES_her0

11月日更

#低码系列#低代码来了,程序员会失业吗?

布鲁

低代码开发 低代码平台

Prometheus HTTP API 查询(七)管理员接口

耳东@Erdong

Prometheus PromQL HTTP API 11月日更

今天参加了“2021全球架构师峰会”...

后台技术汇

11月日更 全球架构师峰会

【高并发】深度解析线程池中那些重要的顶层接口和抽象类

冰河

Java 并发编程 多线程 高并发 异步编程

【Promise 源码学习】第六篇 - 实现 Promise 的链式调用

Brave

源码 Promise 11月日更

quarkus接触研究个人总结

weir威尔

架构 微服务架构 istio Service Mesh 服务网格 Quarkus

在线文本转拼音工具

入门小站

工具

Lua-复合变量

Changing Lin

11月日更

架构训练营 - 模块 3 作业

焦龙

架构实战营

【LeetCode】检测大写字母Java题解

Albert

算法 LeetCode 11月日更

.NET6新东西--Random.Shared

喵叔

11月日更

了解一下OpenVINO的API

IT蜗壳-Tango

11月日更

CRM User Status profile中Business Transaction字段的用途

汪子熙

CRM SAP 订单 11月日更

Google Play的应用发现,第3部分:使用机器学习打击规模化的垃圾信息和恶意评论_Google_Hsu-Chieh Lee_InfoQ精选文章