写点什么

Google Play 的应用发现,第 3 部分:使用机器学习打击规模化的垃圾信息和恶意评论

  • 2017-03-07
  • 本文字数:1747 字

    阅读完需:约 6 分钟

InfoQ 此前翻译分享了“Google Play 的应用发现”系列文章中的“了解主题”和“使用相关App 的个性化建议”,本文是该系列的第三部分,主要介绍了Google Play 如何借助机器学习技术来打击规模化的垃圾信息和恶意评论。

在应用发现系列文章的第一部分第二部分中,我们讨论了通过使用机器学习来对App 的相关主题有一个更深入的理解,以及一个深度学习框架来提供个性化推荐服务。本问将讨论借助机器学习技术,来打击Google Play Store 应用中的垃圾信息和恶意行为,从而为10 多亿Android 用户提供一个安全可信任的应用平台。

随着应用逐渐成为人们工作和生活中越来越重要的一部分,我们认识到有至关重要的两点必须得到保证:1) Google Play 找到的App 是安全的, 2) 展现给用户的App 信息是可靠且公正的。我们的目录中已有超过1 百万的App,并且新推出App 的数量每日都在明显增加,所以需要开发可扩展的方法来精准快速地识别劣质App。为解决该问题我们双管齐下,使用多种机器学习技术来帮助打击规模化的垃圾信息和恶意行为。

识别并阻止劣质App 进入Google Play 平台

正如 Google Play 开发者政策中所述,我们不允许上架恶意的、攻击性的或者非法 App。虽然有这样的政策,但依然会有少数破坏分子试图发布欺骗用户的应用。从大量应用目录中发现违反政策的应用并不是件简单的事情,尤其是每天还有数万新应用提交。这就是在评估是否违反政策,以及一个 App 对它的潜在用户可能构成的潜在风险方面,我们拥抱机器学习技术的原因。

我们使用了多种技术,比如基于大型概率网络的词嵌入 (word embedding) 文本分析、使用 Google Brain 的图像理解以及 APK 二进制文件的静态和动态分析。这些独特的技术主要目的是探测具体的违规行为(比如,受限内容、隐私和安全、知识产权、用户欺诈),相比于人工审核这种方式会更加系统化和可靠。被算法标识出的 App,要么退回给开发者要求修复检测到的问题,要么“暂存”到我们可以证明它是安全的,或清除潜在的违规行为。因为这种 App 审核流程结合了专家分析和算法,所以开发者可以在 App 提交后的数小时里就采取必要措施(比如继续迭代或发布)。

图示攻击性内容样本的词嵌入中违反政策的 App(红点)和符合政策的 App(绿点),通过 t-SNE( t-Distributed Stochastic Neighbor Embedding )算法绘制。

阻止操纵应用评分和排名

一个 App 其自身可能是合法合规的,但一些不良分子可能企图通过刷榜来操纵该应用的评分和排名。为了给用户提供一个 App 可感知质量的准确反映,我们在努力消除这些不良企图。然而,在我们制定政策做出努力的同时,操纵行为背后的不良分子也在尝试调整和改变他们的行为策略以绕过我们的政策,从而导致了一个对抗性问题摆在我们面前。

这种情况下,除了使用传统的有监督学习方法(正如我们在本系列的第一部分或第二部分里所介绍的,这是个更加“固定”的问题),还需要开发一个可重复的流程,让我们跟破坏分子一样(至少不亚于他们)敏捷。我们通过使用一种混合策略实现了这一点,该策略使用无监督学习技术生成训练数据,这些数据被依次输入到一个传统有监督学习技术构建的模型。

利用发生在Google Play 平台上的交互、事务和行为数据,我们应用异常检测技术来识别被刷榜党盯上的App。比如,一个可疑App 的所有交互数据可能源自某一个数据中心,而一个有机交互的正常应用其交互数据一般会符合一个正常的来源分布。

接着我们使用这些App 来分离出那些密谋或精心策划来操纵评分和排名的App,还有那些轮流用于训练数据来构建识别相似App 模型的。使用有监督学习技术构建的这个模型,接下来用于扩展覆盖度以及消除Google Play Apps 平台上的刷榜行为。

图示一个通过已知恶意行为App(红色)训练过的模型,如何扩大覆盖度来检测类似的恶意行为App(橙色),同时忽略掉系统用户(蓝色)。

通过支持快速发布同时不对用户安全妥协,我们力争使Google Play 成为开发者和用户的最佳平台。上文提到的机器学习的潜力帮助我们取得了双赢,而且我们会继续在这些技术上做出创新,以确保我们的用户远离垃圾信息和恶意行为。


感谢刘志勇对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-03-07 16:551788

评论

发布
暂无评论
发现更多内容

vue3 +ts 如何安装封装axios

肥晨

Vue3 三周年连更

kubernetes fifo源码解析

欢乐的阿苏

golang DevOps 后端 源码阅读 #Kubernetes#

车企外卷:一个关于智能手机的“围城故事”

脑极体

手机 车企

全球首个完全开源的指令跟随大模型;T5到GPT-4最全盘点

OneFlow

5 分钟带你小程序入门 [实战总结分享]

程序员海军

小程序 微信小程序 前端 三周年连更

程序员如何保住自己的饭碗?| 社区征文

liuzhen007

程序员 三周年征文

ContentProvider介绍

芯动大师

ContextClassLoader 三周年连更

Golang并发编程实战:使用ring buffer实现高效的阻塞队列

Jack

zookeeper的节点加密方式及分布式锁实现过程

浅羽技术

三周年连更

一文掌握 Go 文件的读取操作

陈明勇

Go golang 文件读取 三周年连更

不要过于吹捧ChatGPT:人工智能生成文字还有很大提升空间

石头IT视角

一文读懂封装

断墨寻径

#java 三周年征文

一定是疯了!在M1的Mac上玩OpenVINO,让Intel怎么看我?

IT蜗壳-Tango

OpenVINO Stable Diffusion 三周年连更

kubernetes delta_fifo源码解析

欢乐的阿苏

golang DevOps 后端 源码阅读 #Kubernetes#

【坚果派-坚果】获取OpenHarmony 3.2 Release源码的两种方式

坚果

HarmonyOS OpenHarmony OpenHarmony3.2 三周年连更

影驰 GeForce RTX 4070显卡正式开售!星曜 OC系列首发评测抢先看

Geek_2d6073

kubernetes indexer源码解析

欢乐的阿苏

golang DevOps cache 源码阅读 #Kubernetes#

Unity 之 转微信小游戏本地数据存储

陈言必行

Unity 三周年连更

RabbitMQ组件介绍

穿过生命散发芬芳

RabbitMQ 三周年连更

一文读懂Annotation

老周聊架构

三周年连更

对话ChatGPT:Prompt是普通人“魔法”吗?

Alter

危中蕴机:Oi! Network展现出的勇气和决心

股市老人

达观助手AI写作下载安装教程及特色功能详解,速速收藏体验!

NLP资深玩家

C生万物 | 反汇编深挖【函数栈帧】的创建和销毁

Fire_Shield

C语言 汇编 三周年连更 函数栈帧

AI日课@20230412:Prompt Engineering

无人之路

ChatGPT

盘点 8 款好用的 API 接口文档管理工具

Liam

程序员 接口文档 API 接口规范 接口编写

HuggingGPT 强势来袭,LLM+ 专家模型,迈向更通用的AI

Zilliz

Zilliz Towhee ChatGPT LLM huggingface

一文读懂域名注册

火山引擎边缘云

证书 域名 域名服务器

devops|中小公司不要做研发效能度量

laofo

DevOps 研发效能 效能度量 DevOps工具链 研发效能度量

论程序员的为码之“道”

酱紫的小白兔

Go语言开发小技巧&易错点100例(三)

闫同学

Go 三周年连更

Google Play的应用发现,第3部分:使用机器学习打击规模化的垃圾信息和恶意评论_Google_Hsu-Chieh Lee_InfoQ精选文章