写点什么

阿里巴巴 AAAI 2018 录用论文:将句法信息加入实体表示模型

  • 2018-01-09
  • 本文字数:1517 字

    阅读完需:约 5 分钟

论文名称:Syntax-aware Entity Embedding for Neural Relation Extraction(句法敏感的实体表示用于神经网络关系抽取)

团队名称:业务平台事业部

作者:何正球,陈文亮,张梅山,李正华,张伟,张民

摘要

句法敏感的实体表示用于神经网络关系抽取。关系抽取任务大规模应用的一个主要瓶颈就是语料的获取。近年来基于神经网络的关系抽取模型把句子表示到一个低维空间。这篇论文的创新在于把句法信息加入到实体的表示模型里。首先,基于 Tree-GRU,把实体上下文的依存树放入句子级别的表示。其次,利用句子间和句子内部的注意力,来获得含有目标实体的句子集合的表示。

研究背景和动机

关系抽取任务大规模应用的一个主要瓶颈就是语料的获取。远程监督模型通过将知识库应用于非结构化文本对齐来自动构建大规模训练数据,从而减轻对人工构建数据的依赖程度,并使得模型跨领域适应能力得到增强。然而,在利用远程监督构建语料的过程中,仅仅利用实体名称进行对齐,而不同实体在不同关系下应该具有更加丰富的多样的语义表示,从而导致错误标注等问题。因此,一套更加丰富的实体表示显得尤为重要。

另一方,基于语法信息的方法通常作用于两个实体之间的关系上,而语法信息是可以更加丰富实体的表示的。因此,本文基于句法上下文的实体表示来丰富实体在不同关系模式下的语义,并结合神经网络模型处理关系抽取任务。

相关工作介绍

我们把相关的工作大致分成早期基于远程监督的方法和近年来基于神经网络模型两类。

为了解决关系抽取任务严重依赖于标注语料的问题,Mintz et al.(2009) 率先提出了基于远程监督的方法构建标注语料。然而,这样构建的自动标注语料含有大量的噪声。为了缓解语料中噪声带来的影响,Riedel et al.(2010) 将关系抽取看成是一个多实例单类别的问题。进一步的,Hoffmann et al.(2011) 和 Surdeanu et al.(2012) 采取了多实例多类别的策略。同时,采用最短依存路径作为关系的一个语法特征。上述方法典型的缺陷在于模型的性能依赖于特征模板的设计。

近年来,神经网络被广泛的应用于自然语言处理任务上。在关系抽取领域,Socher et al.(2012) 采用循环神经网络来处理关系抽取。Zeng et al.(2014) 则构建了端到端的卷积神经网络,进一步的,Zeng et al.(2015) 假设多实例中至少有一个实例正确地表示了相应的关系。相比于假设有一个实例表示一对实体的关系,Lin et al.(2016) 通过注意力机制挑选正面的实例更充分的使用了标注语料含有的信息。

以上这些基于神经网络的方法大多数都使用词层次的表示来生成句子的向量表示。另一方面,基于语法信息的表示也受到了众多研究者的青睐,其中最主要的即最短依存路径 (Miwa and Bansal(2016) 和 Cai et al.(2016))。

主要方法

首先,基于依存句法树,利用基于树结构的循环神经网络(Tree-GRU)模型生成实体在句子级别的表示。如上图所示,有别于仅仅使用实体本身,我们能够更好地表达出长距离的信息。具体的实体语义表示如下图所示。我们使用Tree-GRU 来获得实体的语义表示。

其次,利用基于子节点的注意力机制(ATTCE,上图)和基于句子级别的实体表示注意力机制(ATTEE,下图) 来减轻句法错误和错误标注的负面影响。

实验结果

本文在NYT 语料上进行了实验。最终结果如上图所示。其中,SEE-CAT 和SEE-TRAINS 分别是本文使用的两种结合三种向量表示(句子的向量表示,两个实体的向量表示)的策略。从图中可以看出,本文提出的模型在相同数据集上取得了比现有远程监督关系抽取模型更好的性能。

总结

本文的实验结果表明,更丰富的命名实体语义表示能够有效地帮助到最终的关系抽取任务。

如果您也有论文被 AAAI录用或者对论文编译整理工作感兴趣,欢迎关注AI前线(ai-front),在后台留下联系方式,我们将与您联系,并进行更多交流!

2018-01-09 17:222895

评论

发布
暂无评论
发现更多内容

Java基础:集合框架之Map

百思不得小赵

map Java’ 6月月更

零信任安全模型-下一代网络安全架构

领创集团Advance Intelligence Group

架构 网络安全 零信任

深入理解和把握数字经济的基本特征

CECBC

如何利用数仓创建时序表

华为云开发者联盟

数据库 后端 华为云 时序表

Java—NIO

武师叔

6月月更

中国移动应用出海发展天地宽

BeeWorks

20省市公布元宇宙路线图

CECBC

理论+案例,带你掌握Angular依赖注入模式的应用

华为云开发者联盟

程序员 前端 华为云

基于 ShardingSphere 的得物数据库中间件平台“彩虹桥”演进之路

SphereEx

数据库 中间件 ShardingSphere 实践

Gartner:如何在中国成功应用多云模式

BeeWorks

泛型的类型擦除后,fastjson反序列化时如何还原?

码农参上

泛型 底层知识 Java 开发

力扣每日一练之字符串Day6

京与旧铺

6月月更

SAVE: 软件分析验证和测试平台

华为云开发者联盟

云计算 测试 后端 开发 软件分析

SaaS 云工具,产业互联网下的变革利器

小炮

Go语言Redis API基本功能实践

FunTester

NLP 论文领读|改善意图识别的语义表示:有监督预训练中的各向同性正则化方法

澜舟孟子开源社区

人工智能 自然语言处理 深度学习 预训练模型

观测云更新|观测云帮助文档全新上线;新增 Profile 可观测新增 Profile 可观测;新增 Deployment 网络详情及网络分布等

观测云

如何实现一套容器(C语言版)1

祖维

c 容器 泛型 迭代器

ElasticSearch第二弹之分片原理

阿Q说代码

ES shard replica

区块链为化解信任危机带来新契机

CECBC

FastApi+Vue+LayUI实现前后端分离

Python研究所

6月月更

解读2022年度敏捷教练行业现状报告

华为云开发者联盟

后端 开发 华为云

vue快速学习、基础用法

开发微hkkf5566

墨天轮访谈 | IvorySQL王志斌—IvorySQL,一个基于PostgreSQL的兼容Oracle的开源数据库

墨天轮

数据库 oracle postgresql 开源

港股多支个股表现活跃,引发投资者对港股市场回暖猜想与关注

E科讯

你了解shiro吗?手把手教你集成shiro

阿Q说代码

springboot 鉴权 shiro 身份验证

创新实力再获认可!腾讯安全MSS获2022年度云原生安全守护先锋

腾讯安全云鼎实验室

云原生 云安全

数字经济时代文化消费新特征

CECBC

2023年广州美博会时间地点详情

Geek_0b38bb

美博会 2023年广州美博会 春季广州美博会 广州春季美博会

JDK动态代理为什么必须要基于接口?

码农参上

JAVA开发 动态代理 底层知识

盘点四种WiFi加密标准:WEP、WPA、WPA2、WPA3

wljslmz

wifi 6月月更 无线安全 wpa3 wep

阿里巴巴AAAI 2018录用论文:将句法信息加入实体表示模型_阿里巴巴_阿里巴巴业务平台事业部_InfoQ精选文章