QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

谷歌发布生态系统 RLDS,可在强化学习中生成、共享和使用数据集

  • 2021-12-20
  • 本文字数:2643 字

    阅读完需:约 9 分钟

谷歌发布生态系统RLDS,可在强化学习中生成、共享和使用数据集

大多数强化学习序列决策算法都需要智能体与环境的大量交互生成训练数据,以获得最佳性能。这种方法效率很低,尤其是在很难做到这种交互的情况下,比如用真实的机器人来收集数据,或者和人类专家进行交互。要缓解这个问题,可以重用外部的知识源,比如 RL Unplugged Atari 数据集,其中包括玩 Atari 游戏的合成智能体的数据。


但是,由于这些数据集非常少,而且序列决策生成数据的任务和方式多种多样(例如,专家数据或噪声演示,人类或合成交互,等等),因此,整个社区要用一组很少的、具有代表性的数据集进行工作,就不太现实,甚至不可取。另外,有些数据集被发行成仅适合特定算法的形式,因此研究者不能重用这些数据集。比如,某些数据集并没有包含与环境的交互序列,但却提供了一组让我们无法重构其时间关系的随机交互,其他数据集则会以稍有差异的方式发行,从而导致细微的误差,非常难以识别。

 

基于此,我们提出了强化学习数据集(Reinforcement Learning Datasets,RLDS),并发布了一套用于记录、重放、操作、注释和共享数据的工具,用于序列决策制定,其中包括离线强化学习学徒学习(Apprenticeship learning)或模仿学习(imitation learning)。RLDS 可以方便地共享数据集,而不会损失任何信息(比如,保持交互的序列,而非随机化),而且独立于底层原始格式,从而允许用户在更广泛的任务上对新的算法进行快速测试。


另外,RLDS 提供了收集由合成智能体(EnvLogger)或人类(RLDS Creator)生成的数据的工具,以及对收集到的数据进行检查与处理的工具。最后,通过与 TensorFlow Dataset(TFDS)集成,有助于加强与研究界共享强化学习数据集。

 


通过 RLDS,用户可以将智能体与环境的交互以无损、标准的格式进行记录。他们可以利用并转换这些数据,供不同的强化学习或序列决策算法使用,或者进行数据分析。

数据集结构

 

强化学习、离线强化学习或模仿学习中的算法,都有可能会使用格式完全不同的数据,并且,当数据集的格式不清楚时,很容易导致由于对底层数据的误解引起的 bug。


RLDS 通过定义数据集的每个字段的内容和意义,使数据格式显式化,并为其提供了重新对齐和转换的工具,以适应任何算法实现所需的格式。为了定义数据格式,RLDS 利用了强化学习数据集固有的标准结构,也就是智能体和环境之间的交互(步骤)的序列(情节),其中,智能体可以是基于规则的/自动化控制器、正式规划者、人类、动物,或上述的组合。


这些步骤中的每一个都包含当前的观察、应用于当前观察的行动、作为应用行动的结果而获得的奖励以及与奖励一起获得的折扣。步骤还包括额外的信息,以表明该步骤是该情节的第一个还是最后一个,或者该观察是否对应于一个终端状态。每个步骤和情节还可以包含自定义的元数据,可用于存储与环境相关或与模型相关的数据。

生成数据

 

研究人员通过记录任何类型的智能体与环境的交互来产生数据集。为了保持其有用性,原始数据最好以无损格式存储,记录所有生成的信息,并保留数据项之间的时间关系(例如,步骤和事件的序列),而不会对将来如何利用数据集作出任何假定。为了这个目的,我们发行了 EnvLogger,这是一个软件库,以开放文档格式记录智能体与环境的交互。

 

EnvLogger 是一种环境包装器,可以将智能体与环境的交互记录下来,并将它们存储在一个较长的时间内。虽然 EnvLogger 无缝地集成在 RLDS 生态系统中,但是我们将其设计为可作为一个独立的库使用,以提高模块化程度。

 

与大多数机器学习环境一样,为强化学习收集人类数据是一个既费时又费力的过程。解决这个问题的常见方法是使用众包,它要求用户能够轻松地访问可能难以扩展到大量参与者的环境。在 RLDS 生态系统中,我们发行了一个基于 Web 的工具,名为 RLDS Creator,该工具可以通过浏览器为任何人类可控制的环境提供一个通用接口。用户可以与环境进行交互,例如,在网上玩 Atari 游戏,交互会被记录和存储,以便以后可以通过 RLDS 加载回来,用于分析或训练智能体。

共享数据

 

数据集的制作往往很烦琐,与更广泛的研究社区共享,不仅可以重现之前的实验,还可以加快研究速度,因为它更容易在一系列场景中运行和验证新算法。为此,RLDS 与 TensorFlow Datasets(TFDS)集成,后者是一个现有的机器学习社区内共享数据集的库。一旦数据集成为 TFDS 的一部分,它就会被索引到全球 TFDS 目录中,这样,所有研究人员都可以通过使用 tfds.load(name_of_dataset) 来访问,并且可以将数据以 TensorFlow 或 Numpy 格式加载。

 

TFDS 独立于原始数据集的底层格式,所以,任何具有 RLDS 兼容格式的现有数据集都可以用于 RLDS,即使它最初不是用 EnvLogger 或 RLDS Creator 生成的。另外,使用 TFDS,用户对自己的数据拥有所有权和完全控制权,并且所有的数据集都包含了一个引用给数据集作者。

使用数据

 

研究人员可以使用这些数据集对各种机器学习算法进行分析、可视化或训练,就像上面提到的那样,这些算法可能会以不同的格式使用数据,而不是以不同的格式存储数据。例如,一些算法,如 R2D2R2D3,使用完整的情节;而另一些算法,如 Behavioral Cloning(行为克隆)或 ValueDice,则使用成批的随机步骤。为了实现这一点,RLDS 提供了一个强化学习场景的转换库。由于强化学习数据集的嵌套结构,所以这些转换都经过了优化,包括了自动批处理,从而加速了其中一些操作。使用这些优化的转换,RLDS 用户有充分的灵活性,可以轻松实现一些高级功能,而且开发的管道可以在 RLDS 数据集上重复使用。转换的示例包含了对选定的步骤字段(或子字段)的全数据集的统计,或关于情节边界的灵活批处理。你可以在这个教程中探索现有的转换,并在这个 Colab 中看到更复杂的真实示例。

可用数据集

 

目前,TFDS 中有以下数据集(与 RLDS 兼容):

 

 

我们的团队致力于在不久的将来迅速扩大这个清单,并且欢迎外界为 RLDS 和 TFDS 贡献新的数据集。

结语


RLDS 生态系统不仅可以提高强化学习与序列决策问题研究的可重现性,还可以方便地进行数据的共享和重用。我们期望 RLDS 所提供的特性能够推动一种趋势,即发行结构化的强化学习数据集,包含所有的信息,并涵盖更广泛的智能体和任务。

 

作者介绍:


Sabela Ramos,Google AI 软件工程师。

Léonard Hussenot,谷歌研究室,大脑团队学生研究员。


原文链接:


https://ai.googleblog.com/2021/12/rlds-ecosystem-to-generate-share-and.html

2021-12-20 10:494570

评论

发布
暂无评论
发现更多内容

深度解析KubeEdge EdgeMesh 高可用架构

华为云开发者联盟

云计算 云原生 后端 华为云

提升80%上云集成效率, TA是如何做到的

华为云开发者联盟

云计算 后端 华为云 云集成

基于Spring-AOP的自定义分片工具

京东科技开发者

aop 数据分片 spring aop 配置文件

SpringBoot之用拦截器避免重复请求

okokabcd

Spring Boot

计算机网络:数据链路层设备

timerring

计算机网络 11月月更 网桥

元器件科普|变压器的分类及形状构造

元器件秋姐

元器件采购 华秋商城 变压器 电感器 电压

不懂Hybird开发,感觉错过一个亿~

FinFish

小程序 前端框架 APP开发 APP软件开发、 混合开发

算法题学习---删除有序链表中重复的元素-II

桑榆

算法题 11月月更

基于鸿蒙系统的ArkUI框架的公共剪切类属性和多态样式在前后端分离项目中的表现

恒山其若陋兮

11月月更

传输线路动态巡检探索

鲸品堂

网络 传输网络

通过实战总结的 使用Go的小技巧

王中阳Go

Go golang 高效工作 学习方法 11月月更

解决数据分析落地难的几点经验

穿过生命散发芬芳

数据分析 11月月更

【web 开发基础】PHP 变量的作用范围 (29)

迷彩

作用域 静态变量 全局变量 局部变量 11月月更

5分钟搭建图片压缩应用

华为云开发者联盟

云计算 后端 华为云 函数工作流

度量BGP监测源数量对AS可见性的影响

郑州埃文科技

AS IP地址 BGP数据源

【Ajax进阶】跨域和JSONP的学习

坚毅的小解同志

ajax 11月月更

“如何实现高效的应用交付”鲁班会开发者训练营厦门站进行时

华为云开发者联盟

云计算 软件开发 华为云 应用集成

2022年中国电商平台市场洞察

易观分析

电商 报告

API安全设计5A原则

阿泽🧸

11月月更 API安全

【愚公系列】2022年11月 微信小程序-应用生命周期和全局变量

愚公搬代码

11月月更

鸿蒙系统ARKUI框架对于分布式计算和请求API的实战研究

恒山其若陋兮

前端 11月月更

大模型狂欢背后:AI基础设施的“老化”与改造工程

OneFlow

人工智能 深度学习 大模型

OpenHarmony 3.2 Beta多媒体系列——音视频播放框架

OpenHarmony开发者

OpenHarmony

【Ajax】如何通过axios发起Ajax请求

坚毅的小解同志

ajax 11月月更

跨平台桌面应用开发都有哪些主流框架

FinFish

小程序 跨端框架 桌面端开发 跨端应用开发

信用卡评测系列——阳光惠生活APP深化服务客户品牌理念,焕新升级7.0版

易观分析

金融 银行 信用卡

ArkUI框架基于鸿蒙系统的Scroll和Scroller和自定义组件之插槽的实战案例心得

恒山其若陋兮

前端 11月月更

Go定时任务源码 - robfig/cron

人生如梦

Go 定时任务 cron

一个宁静祥和没有bug的下午和SqlSession的故事

京东科技开发者

mybatis sql Spring Boot CLI SQLSession

Bigkey问题的解决思路与方式探索

vivo互联网技术

redis dba bigkey

【Ajax】全面了解http协议

坚毅的小解同志

HTTP 11月月更

谷歌发布生态系统RLDS,可在强化学习中生成、共享和使用数据集_文化 & 方法_Sabela Ramos_InfoQ精选文章