写点什么

谷歌联合哈佛大学发布最新研究,使用 NeRF 创建 360 度完整神经场景视频

  • 2021-12-16
  • 本文字数:1290 字

    阅读完需:约 4 分钟

谷歌联合哈佛大学发布最新研究,使用NeRF创建360度完整神经场景视频

Google Research 与哈佛大学最新的合作研究,提出了一种称为“Mip-NeRF 360”的新方法。该方法使用 NeRF(Neural Radiance Fields)创建 360 度完整神经场景(neural scene)的视频,进一步推动了 NeRF 适用于在任何环境中随意抽象,不再受限于桌面模型封闭室内场景


不同于大多数前期方法,Mip-NeRF 360 给定了对光线的解释方式,并通过建立关注区域边界降低了原本冗长的训练时间,实现可处理背景的扩展和天空这样的“非受限”场景。


新论文的标题为“Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields”,由 Google Research 高级研究科学家 Jon Barron 牵头完成的。


为深入理解该论文的技术突破,首先对基于 NeRF 的图像生成做一个基础的阐释。

什么是 NeRF?


NeRF 网络并非真正地去描述一个视频,而是使用对单张照片和视频各帧的多个视角拼接出场景,因此更类似于一种基于 AI 实现的完全 3D 虚拟环境。该场景从技术上看只存在于机器学习算法的隐空间(latent space),但可从中任意抽取出大量的视角和视频。


图1 多摄像头捕获点示意图(左图);NeRF获取各捕获点,并拼接出神经场景(右图)


给定一张照片,通过训练其中的信息,生成一个类似于传统 CGI 工作流中体素网格(Voxel grids)的矩阵。矩阵中为 3D 空间中的每个点赋予了一个值,形成可被访问的场景。


图2:体素矩阵示例,其中以三维空间存储像素信息。像素通常采用二维形式表示,例如JPEG文件的像素网格。图片来源:ResearchGate。


该方法在完成各照片间必要的间质空间计算后,通过“光线追踪”确定光照路径上每张照片的每个可能像素点,并对其分配一个颜色值和透明度值。如果没有指定透明度,那么神经矩阵可能是完全不透明的,也可能是完为空的。


NeRF 矩阵与基于 CGI 的三维坐标空间不同,但与体素网格类似,其中的“封闭”对象并不存在任何内部表示。例如,一个架子鼓对象在 CGI 中是可以拆开查看其内部的,但在 NeRF 中一旦将该对象的表面不透明度值设置为 1,那么这台架子鼓就会消失。

像素视角的扩展


Mip-NeRF 360 是对2021年3月发表的一项研究的进一步拓展。该研究提出的 Mip-NeRF 方法通过在 NeRF 中引入有效的抗锯齿,避免做过量的超采样(supersampling)。


NeRF 一般只计算单条像素路径,易于产生早期互联网图像格式和游戏系统中所特有的“锯齿感”。为消除锯齿感边缘,已有方法通常是对相邻像素进行采样,并给出平均表示。


针对传统 NeRF 仅对单条像素路径采样,Mip-NeRF 提出了一种类似宽光束手电筒的“锥形”汇集区,对相关相邻像素提供了充分的信息,形成细节改进的低代价抗锯齿方法。


图3 Mip-NeRF使用的“锥形”汇集区被切片成视锥(下图),并做进一步的模糊化处理,生成用于计算像素精度和锯齿的高斯空间。图片来源:https://www.youtube.com/watch?v=EpH175PY1A0


该方法显著改进了标准 NeRF 实现,如下图所示:


图4 发表于2021年3月的Mip-NeRF方法(右图)。它通过更全面和低代价的锯齿流水线而非对像素的模糊化处理,实现细节改进,避免边缘产生锯齿状。图片来源:https://jonbarron.info/mipnerf/

无界 NeRF


但 Mip-NeRF 依然存在三个尚未解决的问题。首先,要应用于天空这样的无界环境中,其中可能包含超远距离的对象。Mip-NeRF 360 通过对 Mip-NeRF 高斯空间应用Kalman扭曲解决了该问题。


第二,更大的场景需要更高的处理能力和更长的训练时间。为解决该问题,Mip-NeRF 360 使用小规模“提议”多层感知器(MLP,multi-layer perceptron)去“提炼”场景的几何形状。MLP 根据大规模标准 NeRF MLP 预测的几何形状,预先限定了当前形状范围,将训练速度提高了三倍。


第三,更大的场景往往会导致需解构几何体的离散化存在模糊不清的问题,进而导致输出游戏玩家可能非常熟知的“画面撕裂”伪影。Mip-NeRF 360 通过新建对 Mip-NeRF 射线间隔的正则化处理而解决了该问题。


图5 图右侧使用Mip-NeRF,难以对如此规模的场景进行界定,因此产生了不必要的伪影。图左侧使用了新的正则化处理,完全可优化消除这些干扰。


原文链接: Neural Rendering: NeRF Takes a Walk in the Fresh Air

2021-12-16 15:042616

评论

发布
暂无评论
发现更多内容

企业转型难?火山引擎数智平台提供数智升级新路径

字节跳动数据平台

大数据 数据中台 12 月 PK 榜

Clickhouse表引擎探究-ReplacingMergeTree

京东科技开发者

Clickhouse 数据分片 数据验证 存储数据 MergeTree

参加大数据培训可以找到工作吗

小谷哥

汽车之家基于 Milvus 的向量检索平台实践

Zilliz

数据库 向量检索 Milvus

阿里云视觉智能开放平台——人脸活体检测算法重磅升级

夏夜许游

服务升级 人脸活体检测 人脸人体

8个Spring事务失效的场景,你碰到过几种?

JAVA旭阳

Java spring

Amazon 4.7 星评,领域新经典,了解服务设计就读它

图灵社区

产品经理 设计模式 服务设计

Laravel中HasOne和BelongsTo的区别

ModStart

智能合约DAPP开发WEB3.0系统搭建技术

薇電13242772558

智能合约

小游戏流量变现都有哪些窍门?

FinFish

小游戏 微信小程序-游戏 小程序游戏 微信小游戏

【面经分享,附答案】字节系统架构,一面,后端开发

小小怪下士

Java 程序员 面试

盘点那些日赚万金的爆款小游戏

FinFish

小游戏 小程序游戏 微信小游戏 爆款小游戏

Java程序员培训机构怎么选

小谷哥

软件测试培训 | 在霍格沃兹测试开发学社学习是种怎样的体验?

霍格沃兹测试开发学社

专利解析|数据中台—数据流配置弹框交互优化方法

元年技术洞察

数据中台 数字化转型 专利解析

重磅!TDengine 3.2.0 正式发布

TDengine

数据库 tdengine 时序数据库

如何优化大场景实时渲染?HMS Core 3D Engine这么做

最新动态

HMS Core 3D流体仿真技术,打造移动端PC级流体动效

最新动态

这波无感升级有点秀——天翼云QEMU组件热升级方案来了

天翼云开发者社区

云计算 云主机 虚拟化

在北京选择哪家大数据培训机构

小谷哥

HTTP报文内容

穿过生命散发芬芳

HTTP 12月月更

【经验总结】HDI与普通PCB的4点主要区别

华秋PCB

工艺 PCB PCB设计

RocketMQ Schema——让消息成为流动的结构化数据

Apache RocketMQ

RocketMQ

数据存储,消息队列的高可用保障

C++后台开发

数据库 数据结构 消息队列 后端开发 linux开发

迁移速度与计算性能兼得!天翼云DirtyLimit技术大显身手

天翼云开发者社区

虚拟机 迁移 弹性计算

培训班出来前端程序员好找吗?

小谷哥

隐匿于喧嚣城市的世外桃源,「武汉浮生艺术馆」开放小程序预约通道,顺利举办多场艺术展览

天天预约

小程序 SaaS 预约工具 展览 艺术馆

架构实战 - 模块4作业

mm

redis sentinel #架构实战营

架构实战营 模块3-1

西山薄凉

「架构实战营」

学习掌握哪些前端技术才能找到好工作?

小谷哥

如何优化大场景实时渲染?HMS Core 3D Engine这么做

HarmonyOS SDK

HMS Core

谷歌联合哈佛大学发布最新研究,使用NeRF创建360度完整神经场景视频_文化 & 方法_Martin Anderson_InfoQ精选文章