写点什么

谷歌联合哈佛大学发布最新研究,使用 NeRF 创建 360 度完整神经场景视频

  • 2021-12-16
  • 本文字数:1290 字

    阅读完需:约 4 分钟

谷歌联合哈佛大学发布最新研究,使用NeRF创建360度完整神经场景视频

Google Research 与哈佛大学最新的合作研究,提出了一种称为“Mip-NeRF 360”的新方法。该方法使用 NeRF(Neural Radiance Fields)创建 360 度完整神经场景(neural scene)的视频,进一步推动了 NeRF 适用于在任何环境中随意抽象,不再受限于桌面模型封闭室内场景


不同于大多数前期方法,Mip-NeRF 360 给定了对光线的解释方式,并通过建立关注区域边界降低了原本冗长的训练时间,实现可处理背景的扩展和天空这样的“非受限”场景。


新论文的标题为“Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields”,由 Google Research 高级研究科学家 Jon Barron 牵头完成的。


为深入理解该论文的技术突破,首先对基于 NeRF 的图像生成做一个基础的阐释。

什么是 NeRF?


NeRF 网络并非真正地去描述一个视频,而是使用对单张照片和视频各帧的多个视角拼接出场景,因此更类似于一种基于 AI 实现的完全 3D 虚拟环境。该场景从技术上看只存在于机器学习算法的隐空间(latent space),但可从中任意抽取出大量的视角和视频。


图1 多摄像头捕获点示意图(左图);NeRF获取各捕获点,并拼接出神经场景(右图)


给定一张照片,通过训练其中的信息,生成一个类似于传统 CGI 工作流中体素网格(Voxel grids)的矩阵。矩阵中为 3D 空间中的每个点赋予了一个值,形成可被访问的场景。


图2:体素矩阵示例,其中以三维空间存储像素信息。像素通常采用二维形式表示,例如JPEG文件的像素网格。图片来源:ResearchGate。


该方法在完成各照片间必要的间质空间计算后,通过“光线追踪”确定光照路径上每张照片的每个可能像素点,并对其分配一个颜色值和透明度值。如果没有指定透明度,那么神经矩阵可能是完全不透明的,也可能是完为空的。


NeRF 矩阵与基于 CGI 的三维坐标空间不同,但与体素网格类似,其中的“封闭”对象并不存在任何内部表示。例如,一个架子鼓对象在 CGI 中是可以拆开查看其内部的,但在 NeRF 中一旦将该对象的表面不透明度值设置为 1,那么这台架子鼓就会消失。

像素视角的扩展


Mip-NeRF 360 是对2021年3月发表的一项研究的进一步拓展。该研究提出的 Mip-NeRF 方法通过在 NeRF 中引入有效的抗锯齿,避免做过量的超采样(supersampling)。


NeRF 一般只计算单条像素路径,易于产生早期互联网图像格式和游戏系统中所特有的“锯齿感”。为消除锯齿感边缘,已有方法通常是对相邻像素进行采样,并给出平均表示。


针对传统 NeRF 仅对单条像素路径采样,Mip-NeRF 提出了一种类似宽光束手电筒的“锥形”汇集区,对相关相邻像素提供了充分的信息,形成细节改进的低代价抗锯齿方法。


图3 Mip-NeRF使用的“锥形”汇集区被切片成视锥(下图),并做进一步的模糊化处理,生成用于计算像素精度和锯齿的高斯空间。图片来源:https://www.youtube.com/watch?v=EpH175PY1A0


该方法显著改进了标准 NeRF 实现,如下图所示:


图4 发表于2021年3月的Mip-NeRF方法(右图)。它通过更全面和低代价的锯齿流水线而非对像素的模糊化处理,实现细节改进,避免边缘产生锯齿状。图片来源:https://jonbarron.info/mipnerf/

无界 NeRF


但 Mip-NeRF 依然存在三个尚未解决的问题。首先,要应用于天空这样的无界环境中,其中可能包含超远距离的对象。Mip-NeRF 360 通过对 Mip-NeRF 高斯空间应用Kalman扭曲解决了该问题。


第二,更大的场景需要更高的处理能力和更长的训练时间。为解决该问题,Mip-NeRF 360 使用小规模“提议”多层感知器(MLP,multi-layer perceptron)去“提炼”场景的几何形状。MLP 根据大规模标准 NeRF MLP 预测的几何形状,预先限定了当前形状范围,将训练速度提高了三倍。


第三,更大的场景往往会导致需解构几何体的离散化存在模糊不清的问题,进而导致输出游戏玩家可能非常熟知的“画面撕裂”伪影。Mip-NeRF 360 通过新建对 Mip-NeRF 射线间隔的正则化处理而解决了该问题。


图5 图右侧使用Mip-NeRF,难以对如此规模的场景进行界定,因此产生了不必要的伪影。图左侧使用了新的正则化处理,完全可优化消除这些干扰。


原文链接: Neural Rendering: NeRF Takes a Walk in the Fresh Air

2021-12-16 15:042420

评论

发布
暂无评论
发现更多内容

Media Encoder 2024 for mac(ame媒体转码器) v24.0.2中文激活版

mac

苹果mac Windows软件 媒体转码软件 Media Encoder 2024 ME2024

服务器删除文件后磁盘空间没有立刻释放问题

javaNice

Java Linux

iPulse 激活版for mac(系统状态监控软件) v3.141

胖墩儿不胖y

Mac软件 系统监控软件

好用的磁盘分析工具 Disk Xray免激活版

mac大玩家j

磁盘管理 Mac软件 磁盘管理软件

双十一剁手节,MobPush助力各大电商平台提前锁定潜力用户

MobTech袤博科技

大数据

硬件开发少走弯路,来华秋这场研讨会提升技能

华秋电子

工程师

如何配置支付宝密钥之如何配置证书|保姆级教学(二)

盐焗代码虾

证书 支付宝 经验分享 密钥

超级APP,All in one APP

WorkPlus

SATA硬件驱动器接口的可制造性问题详解

华秋电子

SATA

LED显示屏由哪些部件组成

Dylan

系统 LED显示屏 屏幕 电源

推送效率低?MobPush带着APP消息推送一站式解决方案来了

MobTech袤博科技

大数据

如何构建新一代实时湖仓?袋鼠云基于数据湖的探索升级之路

袋鼠云数栈

数据仓库 数据湖 湖仓一体 大数据仓库 实时湖仓

用友BIP,助力轴承行业数智化转型

用友BIP

数智化转型

武创院区块链产业研究所:基于鲲鹏DevKit开发区块链政务服务协同数据治理平台,数据管理更放心

彭飞

WorkPlus安全专属移动数字化航空母舰,助力企业掌控业务和生态

WorkPlus

平安人寿基于 Apache Doris 统一 OLAP 技术栈实践

SelectDB

数据库 大数据 数据仓库 数据分析 apache doris

【iOS开发】iOS App的加固保护原理:使用ipaguard混淆加固

雪奈椰子

使用Python调用API接口获取拼多多商品数据:一篇详细说明文章

Noah

分享一套适合二开的JAVA开源版本MES系统

万界星空科技

生产管理系统 云mes 免费mes 开源mes mes源码

万界星空科技生产管理MES系统的数据追溯技术

万界星空科技

mes 云mes 追溯系统 产品追溯 万界星空科技mes

Amazon Bedrock 划算吗?Bedrock 大模型服务定价与分析

魏临

盈利能力管理,为企业未来发展创造优势

智达方通

全面预算 盈利能力

华润啤酒走进用友,数智化赋能酒业新世界

用友BIP

iOS应用加固方案解析:ipa加固安全技术全面评测

谷歌联合哈佛大学发布最新研究,使用NeRF创建360度完整神经场景视频_文化 & 方法_Martin Anderson_InfoQ精选文章