写点什么

Uber 正式开源其分布式跟踪系统 Jaeger

  • 2017-11-08
  • 本文字数:1721 字

    阅读完需:约 6 分钟

Uber 在 GitHub 正式开源了分布式跟踪系统Jaeger ,其灵感来源于 Dapper OpenZipkin ,从 2016 年开始,该系统已经在 Uber 内部得到了广泛的应用,它可以用于微服务架构应用的监控,特性包括分布式上下文传播(Distributed context propagation)、分布式事务监控、根原因分析、服务依赖分析以及性能 / 延迟优化。该项目已经被云原生计算基金会(Cloud Native Computing Foundation,CNCF)接纳为第12 个项目

Uber 分布式跟踪技术的演化

Uber 的分布式跟踪系统是随着业务的演化而不断发展的,在由单体架构迁移至微服务时,传统的监视工具,例如度量值和分布式日志依然能够发挥作用,但这类工具往往无法提供跨越不同服务的可见性。因此,就有必要引入分布式跟踪的工具。

最初,Uber 所使用的跟踪工具叫做 Merckx。Merckx 架构使用了拉取模式,可从 Kafka 的指令数据中拉取数据流,其不足之处在于主要面向单体式 API 的时代,缺乏分布式上下文传播的概念。随后,Uber 开发了 TChannel ,这是一种适用于 RPC 的网络多路复用和框架协议。很多新构建的服务都使用了 TChannel,但是承担核心业务的大部分服务都没有使用 Tchannel。这些服务主要是通过四大编程语言(Node.js、Python、Go 和 Java)实现的,在进程间通信方面使用了多种不同的框架。这种异构的技术环境使得 Uber 在分布式追踪系统的构建方面会面临比谷歌和 Twitter 更严峻的挑战。

因此,Uber 专门组建了分布式跟踪团队,团队目标就是将现有的 Tchannel 原型系统转换为一种可以全局运用的生产系统,让分布式追踪功能可以适用并适应 Uber 的微服务。该团队集思广益,创建了 Jaeger 项目。
关于 Uber 分布式跟踪技术的演进过程,在 InfoQ 之前的文章中曾经有过相关报道

Jaeger 项目简介

术语

Jaeger 兼容 OpenTracing 的数据模型和 instrumentation 库,能够为每个服务 / 端点使用一致的采样方式。在 Jaeger 中,使用了该规范所定义的术语。

  • Span:代表了系统中的一个逻辑工作单元,它具有操作名、操作开始时间以及持续时长。Span 可能会有嵌套或排序,从而对因果关系建模。一个 RPC 调用的 Span 如下图所示。

  • Trace:代表了系统中的一个数据 / 执行路径,可以理解成 Span 的有向无环图。

组件

Jaeger 的各组件关系如下图所示:

Jaeger 客户端库

Jaeger 客户端库是 OpenTracing API 的特定语言实现。它们可以对要进行分布式跟踪的应用进行 instrument 操作,这些应用可以手动实现,也可以使用各种已有的开源的框架,比如 Flask、Dropwizard、gRPC 等。

经过 instrument 操作的服务在接收到新请求的时候,就会创建 Span 并关联上下文信息(trace id、span id 和 baggage)。只有 id 和 baggage 会随请求进行传播,而组成 Span 的其他信息,比如操作名称、日志等,并不会随之传播。采样得到的 Span 会在后台异步传递到进程外边,发送到 Jaeger Agent 上。

需要注意的是,所有的 Trace 都会生成,但是只有其中的一小部分会被采样。默认情况下,Jaeger 会采样 0.1% 的 Trace。

Agent

Agent 是一个网络守护进程,监听通过 UDP 发送过来的 Span,它会将其批量发送给 collector。按照设计,Agent 要被部署到所有主机上,作为基础设施。Agent 将 collector 和客户端之间的路由与发现机制抽象了出来。

Collector

Collector 从 Jaeger Agent 接收 Trace,并通过一个处理管道对其进行处理。目前的管道会校验 Trace、建立索引、执行转换并最终进行存储。存储是一个可插入的组件,现在支持 Cassandra。

Query

Query 服务会从存储中检索 Trace 并通过 UI 界面进行展现,该 UI 界面通过 React 技术实现,其页面 UI 如下图所示,展现了一条 Trace 的详细信息。

按照其官网的介绍,未来计划加入的功能包括自适应采样(Adaptive Sampling)提供更多种语言的客户端库、延迟矩阵图、动态配置、基于Apache Flink 构建数据管道,以支持Trace 聚集和数据挖掘,除此之外,Jaeger 0.70 版本已支持服务到服务的依赖图,未来还会支持基于路径的依赖图,能够展现出某项服务的所有上下流依赖,而不仅仅是临近的服务。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-11-08 18:004631

评论

发布
暂无评论
发现更多内容

研发团队如何实现无缝协作?

万事ONES

研发管理 团队协作 研发效能 研发工具

数字货币交易所交易平台系统开发

编写令人愉悦的API接口(一)

Geek_42915f

Java 程序设计 API APi设计

吊!设计模式全解:6大设计原则+23种设计模式+设计模式PK+设计模式混编

Java架构之路

Java 程序员 架构 面试 编程语言

微服务架构太难了?那你可能还没掌握SpringBoot+SpringCloud+Docker+RabbitMQ

Java架构之路

Java 程序员 架构 面试 编程语言

FastAI:滴普技术荟:基于深度学习的云边一体化OLED屏缺陷自动光学检测技术

学习 缺陷检测 云边一体 自动光学检测

职业规划

Albert

职业规划 七日更

2020中国 .NET开发者大会精彩回顾:葡萄城高性能表格技术解读

葡萄城技术团队

GCExcel 中国 .NET开发者大会 表格技术

腾讯T4架构师:刷3遍以下面试题,你也能从小公司成功跳到大厂

Java架构之路

Java 程序员 架构 面试 编程语言

让你的简历不落窠臼,精雕细镂写一份真正的技术简历(Python向)

刘悦的技术博客

Python 面试 简历优化 简历

JVM 的运行时数据区域分布

rookiedev

Java JVM

LeetCode题解:92. 反转链表 II,迭代,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

关于昆明市政协、市统战部、民革昆明市委赴云南坤艮盈科技有限公司(商务部CECBC区块链专委会秘书处云南办事处)调研指导工作

CECBC

云南发展

低代码与零代码工具的这些特征,弥补了所有人和IT之间的差距!

J2PaaS低代码平台

程序员 互联网 开发者 软件开发 开发工具

区块链矿机系统开发现成案例

区块链商城APP系统开发|区块链商城软件开发

系统开发

号称大厂面试官的克星,“神仙版”Java面试宝典,“真”吊打大厂面试官

Java架构之路

Java 程序员 架构 面试 编程语言

远见而明察近观若明火|Centos7.6环境基于Prometheus和Grafana结合钉钉机器人打造全时监控(预警)Docker容器服务系统

刘悦的技术博客

Docker 高可用 监控 Prometheus 预警

Java 细粒度锁续篇

rookiedev

Java 多线程 加锁

FastAI:滴普技术荟:某工业产品内部结构尺寸图像测量和缺陷检测分析

AI 目标检测 图像处理 缺陷检测 图像检测

学习笔记丨数据结构之二叉查找树

Liuchengz.

数据结构 C/C++ 数据结构与算法 高级数据结构

区块链矿机挖矿系统开发软件技术

区块链农场游戏系统开发软件定制

用了这个评估优化LiteOS镜像利器,我有点飘...

华为云开发者联盟

镜像 开发 环境配置

转型项目经理?

escray

面试 面经 七日更 十日谈

假冒、诈骗、隐私安全,如何应对数字人民币的风险与挑战?

CECBC

货币

使用 Helmfile 解放你的 Helm Chart

郭旭东

云原生 Helm

规模化敏捷框架何从入手?这篇文章把SAFe讲透了!

华为云开发者联盟

敏捷开发 框架 safe

Ribbon使用及其内核原理剖析

飞鸟

比特币的安全性到底有多高?

CECBC

比特币

FastAI:滴普技术荟:基于机器视觉的典型多目标追踪算法应用实践

目标追踪 目标检测 追踪算法

Uber正式开源其分布式跟踪系统Jaeger_语言 & 开发_张卫滨_InfoQ精选文章