写点什么

机器学习排序 LTR 入门——线性模型

  • 2017-10-22
  • 本文字数:4416 字

    阅读完需:约 14 分钟

很多搜索达人都有这样一种冲动,想要“通过机器学习获得最优权重”然后用于搜索查询中。对于搜索这件事儿来说有点像打地鼠游戏,正如通常人们所说的“如果我能选择优化‘标题匹配’的权重还是‘内容匹配’的权重,那我肯定会做得更好”!

这种学习何种权重应用于查询的本能,就是最简化机器学习排序(learning to rank,LTR)模型的根本原理:线性模型。没错,就是传说中的线性回归!线性回归非常简单易用,甚至感觉一点儿都不像是机器学习;更像是高中生的统计学一样,理解该模型及其原理也非常地容易。

本系列文章中,我想先介绍成功实施LTR 背后的关键算法,从线性回归开始,逐步到梯度 boosting(不同种类的boosting 算法一起)、RankSVM 和随机森林等算法。

LTR 首先是一个回归问题

对于本系列的文章,正如你在前一篇文档中了解到的,我想把LTR 映射为一个更加通用的问题:回归。回归问题需要训练一个模型,从而把一组数值特征映射到一个预测数值。

举个例子:你需要什么样的数据才能预测一家公司的利润?可能会有,手边的历史公共财务数据,包括雇员数量、股票价格、收益及现金流等。假设已知某些公司的数据,你的模型经过训练后用于预测这些变量(或其子集)的函数即利润。对于一家新公司,你可以使用这个函数来预测该公司的利润。

LTR 同样是一个回归问题。你手头上有一系列评价数据,来衡量一个文档与某个查询的相关度等级。我们的相关度等级取值从 A 到 F,更常见的情况是取值从 0(完全不相关)到 4(非常相关)。如果我们先考虑一个关键词搜索的查询,如下示例:

grade,movie,keywordquery
4,Rocky,rocky
0,Turner and Hootch,rocky
3,Rocky II,rocky
1,Rambo,rocky

当构建一个模型来预测作为一个时间信号排序函数的等级时,LTR 就成为一个回归问题。 相关度搜索中的召回,即我们所说的信号,表示查询和文档间关系的任意度量;更通用的名称叫做特征,但我个人更建议叫长期信号。原因之一是,信号是典型的独立于查询的——即该结果是通过度量某个关键词(或查询的某个部分)与文档的相关程度;某些是度量它们的关系。因此我们可以引入其他信号,包括查询特有的或者文档特有的,比如一篇文章的发表日期,或者一些从查询抽取出的实体(如“公司名称”)。

来看看上面的电影示例。你可能怀疑有 2 个依赖查询的信号能帮助预测相关度:

  1. 一个搜索关键词在标题属性中出现过多少次
  2. 一个搜索关键词在摘要属性中出现过多少次

扩展上面的评价,可能会得到如下 CSV 文件所示的回归训练集,把具体的信号值映射为等级:

grade,numTitleMatches,numOverviewMatches
4,1,1
0,0,0
3,0,3
1,0,1

你可以像线性回归一样应用回归流程,从而通过其他列来预测第一列。也可以在已有的搜索引擎像 Solr Elasticsearch 之上来构建这样一个系统。

我回避了一个复杂问题,那就是:如何获得这些评价?如何知道一个文档对一个查询来说是好还是坏?理解用户分析?专家人工分析?这通常是最难解决的——而且是跟特定领域非常相关的!提出假设数据来建立模型虽然挺好的,但纯属做无用功!

线性回归 LTR

如果你学过一些统计学,可能已经很熟悉线性回归了。线性回归把回归问题定义为一个简单的线性函数。比如,在 LTR 中我们把上文的第一信号(一个搜索关键词在标题属性中出现过多少次)叫做 t,第二信号(一个搜索关键词在摘要属性中出现过多少次)叫做 o,我们的模型能生成一个函数 s,像下面这样对相关度来打分:

我们能评估出最佳拟合系数 c0,c1,c2 等,并使用最小二乘拟合的方法来预测我们的训练数据。这里就不赘述了,重点是我们能找到c0,c1,c2 等来最小化实际等级g 与预测值s(t,o) 之间的误差。如果温习下线性代数,会发现这就像简单的矩阵数学

使用线性回归你会更满意,包括决策确实是又一个排序信号,我们定义为t*o。或者另一个信号t2,实践中一般定义为t^2 或者log(t),或者其他你认为有利于相关度预测的最佳公式。接下来只需要把这些值作为额外的列,用于线性回归学习系数。

任何模型的设计、测试和评估是一个更深的艺术,如果希望了解更多,强烈推荐统计学习概论

使用sklearn 实现线性回归LTR

为了更直观地体验,使用Python 的 sklearn 类库来实现回归是一个便捷的方式。如果想使用上文数据通过线性回归尝试下简单的 LTR 训练集,可以把我们尝试的相关度等级预测值记为 S,我们看到的信号将预测该得分并记为 X。

我们将使用一些电影相关度数据尝试点有趣的事情。这里有一个搜索关键词“Rocky”的相关度等级数据集。召回我们上面的评判表,转换为一个训练集。一起来体验下真实的训练集(注释会帮助我们了解具体过程)。我们将检查的三个排序信号,包括标题的 TF*IDF 得分、简介的 TF*IDF 得分以及电影观众的评分。

复制代码
grade,titleScore,overviewScore,ratingScore,comment:# keywords@movietitle
4,10.65,8.41,7.40,# 1366 rocky@Rocky
3,0.00,6.75,7.00,# 12412 rocky@Creed
3,8.22,9.72,6.60,# 1246 rocky@Rocky Balboa
3,8.22,8.41,0.00,# 1374 rocky@Rocky IV
3,8.22,7.68,6.90,# 1367 rocky@Rocky II
3,8.22,7.15,0.00,# 1375 rocky@Rocky V
3,8.22,5.28,0.00,# 1371 rocky@Rocky III
2,0.00,0.00,7.60,# 154019 rocky@Belarmino
2,0.00,0.00,7.10,# 1368 rocky@First Blood
2,0.00,0.00,6.70,# 13258 rocky@Son of Rambow
2,0.00,0.00,0.00,# 70808 rocky@Klitschko
2,0.00,0.00,0.00,# 64807 rocky@Grudge Match
2,0.00,0.00,0.00,# 47059 rocky@Boxing Gym
...

所以接下来直接来到代码的部分!下面的代码从一个 CSV 文件读取数据到一个 numpy 数组;该数组是二维的,第一维作为行,第二维作为列。在下面的注释中可以看到很新潮的数组切片是如何进行的:

复制代码
from sklearn.linear_model import LinearRegression
from math import sin
import numpy as np
import csv
rockyData = np.genfromtxt('rocky.csv', delimiter=',')[1:] # Remove the CSV header
rockyGrades = rockyData[:,0] # Slice out column 0, where the grades are
rockySignals = rockyData[:,1:-1] # Features in columns 1...all but last column (the comment)

不错!我们已准备好进行一个简单线性回归了。这里我们使用一个经典的判断方法:方程比未知数多!因此我们需要使用常最小二乘法来估算特征 rockySignals 和等级 rockyGrades 间的关系。很简单,这就是 numpy 线性回归所做的:

复制代码
butIRegress = LinearRegression()
butIRegress.fit(rockySignals, rockyGrades)

这里给出了系数(即“权重”)用于我们的排序信号,:

复制代码
butIRegress.coef_ #boost for title, boost for overview, boost for rating
array([ 0.04999419, 0.22958357, 0.00573909])
butIRegress.intercept_
0.97040804634516986

漂亮!相关度解决了!(真的吗?)我们可以使用这些来建立一个排序函数。我们已经学习到了分别使用什么样的权重到标题和简介属性。

截至目前,我忽略了一部分事项,即我们需要考量如何评价模型和数据的匹配度。在本文的结尾,我们只是想看看一般情况下这些模型是如何工作。但不只是假设该模型非常适合训练集数据是个不错的想法,总是需要回退一些数据来测试的。接下来的博文会分别介绍这些话题。

使用模型对查询打分

我们通过这些系数可以建立自己的排序函数。做这些只是为了描述目的,sk-learn 的线性回归带有预测方法,能评估作为输入的模型,但是构建我们自己的更有意思:

复制代码
def relevanceScore(intercept, titleCoef, overviewCoef, ratingCoef, titleScore, overviewScore, movieRating):
return intercept + (titleCoef * titleScore) + (overviewCoef * overviewScore) + (ratingCoef * movieRating)

使用该函数我们可以获得检索“Rambo”时,这两部候选电影的相关度得分:

复制代码
titleScore,overviewScore,movieRating,comment
12.28,9.82,6.40,# 7555 rambo@Rambo
0.00,10.76,7.10,# 1368 rambo@First Blood

现在对 Rambo 和 First Blood 打分,看看下哪一个跟查询“Rambo”更相关!

复制代码
# Score Rambo
relevanceScore(butIRegress.intercept_, butIRegress.coef_[0], butIRegress.coef_[1], butIRegress.coef_[2], titleScore=12.28, overviewScore=9.82, movieRating=6.40)
复制代码
# Score First Blood
relevanceScore(butIRegress.intercept_, butIRegress.coef_[0], butIRegress.coef_[1], butIRegress.coef_[2], titleScore=0.00, overviewScore=10.76, movieRating=7.10)

结果得分分别是 Rambo 3.670 以及 First Blood 3.671。

非常接近!First Blood 稍微高于 Rambo 一点儿获胜。原因是这样——Rambo 是一个精确匹配,而 First Blood 是 Rambo 电影前传!因此我们不应该真的让模型如此可信,并没有那么多的例子达到那个水平。更有趣的是简介得分的系数比标题得分的系数大。所以至少在这个例子中我们的模型显示,简介中提到的关键字越多,最终的相关度往往越高。至此我们已经学习到一个不错的处理策略,用来解决用户眼里的相关度!

把这个模型加进来会更有意思,这很好理解,并且产生了很合理的结果;但是特征的直接线性组合通常会因为相关度应用而达不到预期。由于缺乏这样的理由,正如 Flax 的同行所言,直接加权boosting 也达不到预期

为什么?细节决定成败!

从前述例子中可以发现,一些非常相关的电影确实有很高的TF*IDF 相关度得分,但是模型却倾向于概要字段与相关度更加密切。实际上何时标题匹配以及何时概要匹配还依赖于其他因素。

在很多问题中,相关度等级与标题和摘要属性的得分并不是一个简单的线性关系,而是与上下文有关。如果就想直接搜索一个标题,那么标题肯定会更加匹配;但是对于并不太确定想要搜索标题,还是类别,或者电影的演员,甚至其他属性的情形,就不太好办了。

换句话说,相关度问题看起来并非是一个纯粹的最优化问题:

实践中的相关度要更加复杂。并没有一个神奇的最优解,宁可说很多局部最优依赖于很多其他因子的! 为什么呢?换句话说,相关度看起来如图所示:

可以想象这些图(吴恩达机器学习课程中的干货)用于展示“相关度错误” —— 离我们正在学习的分数还有多远。两个θ变量的映射表示标题和摘要的相关度得分。第一张图中有一个单一的最优值,该处的“相关度错误”最小 —— 一个理想的权重设置应用这两个查询。第二个更加实际一些:波浪起伏、上下文相关的局部最小。有时与一个非常高的标题权重值有关,或者是一个非常低的标题权重!

与上下文和细微差别密切相关!

本文到此为止。后续文章将会更多关注如何精确量化模型的适用程度。使用什么样的度量方式来评价一个模型的好坏? 这将是很重要的一步,旨在检验其他方法在捕捉细微差别方面能否做得更好。

查看英文原文: http://opensourceconnections.com/blog/2017/04/01/learning-to-rank-linear-models/


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-10-22 19:007727

评论

发布
暂无评论
发现更多内容

DevTools 实现原理与性能分析实战

vivo互联网技术

chrome 前端 Web

Angular 变化检测详解

PingCode研发中心

angular

ONES 事记|ONES 参与信通院牵头编写的《DevOps 通用效能度量模型》

万事ONES

SaaS SaaS平台

Java的异常处理

海拥(haiyong.site)

28天写作 12月日更

带你掌握二进制SCA检测工具的短板及应对措施

华为云开发者联盟

测试 二进制 漏洞 二进制SCA检测

Kubernetes容器平台架构之道

巨子嘉

云计算 Kubernetes 云原生

撬动百亿VRAR产业,让VR们“造”起来

华为云开发者联盟

AR vr 数字人 元宇宙 VR开发应用

如何使用ADLab搭建活动目录实验环境来练习渗透测试技术

H

网络安全 信息安全 计算机

年末福利!专业级研发项目管理工具CORNERSTONE开源版正式上线!

优秀

项目管理工具

网易有道 | REDIS 云原生实战

有道技术团队

redis

EasyAds:曾经自研的广告聚合SDK,如今在开源平台中唾手可得

EasyAds

sdk 聚合sdk 广告sdk 聚合广告sdk

🍃【Spring专题】「技术原理」Spring Security的核心功能和加载运行流程的原理分析

洛神灬殇

spring spring security 框架搭建 12月日更

ONES CTO 冯斌:如何在终身学习中跳出「恐慌区」

万事ONES

ONES

年终招聘

张老蔫

28天写作

【CSS 学习总结】第七篇 - CSS 布局-居中布局-水平居中布局

Brave

CSS 12月日更

今天谈谈用户故事地图,不是用户故事

华为云开发者联盟

DevOps 敏捷 开发 用户故事 用户故事地图

【转】Node进阶篇之基于 gRPC 协议的 Node 服务

@零度

前端开发 Node

大数据开发之Hive SQL内置函数

@零度

大数据 Hive SQL

Linux之locate命令

入门小站

Linux

在线JSON转JAVA工具

入门小站

工具

恒源云(GPUSHARE)_语音识别与语义处理领域之[机器翻译] 21.7 mRASP2

恒源云

深度学习 机器翻译 语音识别

Shell脚本好学吗?看看这个带你了解shell中色彩处理和awk使用技巧

学神来啦

Linux Shell linux运维 awk linux云计算

Kubernetes API server工作原理

汪子熙

Kubernetes k8s 28天写作 docker image 12月日更

起点决定高度:ONES 如何践行软件标准化

万事ONES

ONES 软件工具 企业管理软件

如何快速搭建一个简单的固资管理系统

全象云低代码

开源 前端 低代码 资管系统 低代码平台

星环科技大数据与人工智能应用研究与案例分享

星环科技

人工智能 大数据 数据分析 数据开发 技术专题合集

架构实战营 4 期 - 第 3 周作业

周念

「架构实战营」

单体应用与微应用典型架构比对

编程江湖

架构

CNCC 演讲实录| 焱融 YRCloudFile 在 AI 训练中的性能优化实践

焱融科技

云计算 AI 云原生 高性能 文件存储

软件开发中的常见的15个定律和原则释义及应用

码语者

软件开发原则 软件开发定律

Nocalhost:云原生开发新体验

CODING DevOps

云原生 Nocalhost

机器学习排序LTR入门——线性模型_语言 & 开发_Doug Turnbull_InfoQ精选文章