写点什么

数据科学团队管理实战

  • 2017-08-21
  • 本文字数:2426 字

    阅读完需:约 8 分钟

数据科学团队的运营不是通过观看 Coursera 和 Udemy 上的讲座和视频就可以学会的。不要误解我们的意思,这两个网站是学习数据科学和机器学习理论及实践问题的好地方。

不过,它们不教授有效的商业实践,也不教授如何运营商业环境里的数据团队。了解算法,知道如何使用 Hadoop,并不足以让我们拥有一个高效的数据团队

给数据科学团队的建议

团队需要和其他部门一起工作,他们需要维护软件,向主管报告,当然,带来商业价值!与分析和商务智能一样,数据科学也只是让企业更高效地赚钱的工具。

大多数数据科学课程都没有提及上述内容。这就是为什么不仅自定义数据科学算法和模型是我们的重点之一,数据科学团队建设也是我们的重点之一。

我们希望提供一些好的方法,帮助数据科学团队取得更大的成功。这与算法和模型无关,一切都是关于企业里的数据专家如何运营数据团队。

ROI Vs. 算法与技术

作为程序员、数据科学家和工程师,对于我们的数据项目或者正在开发的软件,我们大多数人都把更多的注意力放在了技术方面。我们开发产品不只是为了钱,而是为了证明我们能做什么。这是一个挑战!我们是问题解决者。

也许我们希望证明,我们能够开发出一个算法,预测一款产品是否受欢迎。仅仅是为了好玩!

不过,归根结底,我们数据科学家、数据顾问和软件工程师都受雇于企业,而那些企业希望看到财政营收。你是使用了基于神经网络的算法,还是基于支持向量机的算法,这并没什么关系,只要最大限度地节省成本,或者带来最大的收益。

重要的是记住,数据科学家或大数据分析师越快弄清楚这个问题,就越能有效地发挥他们的作用。数据科学家都要有一点企业家精神

数据科学家寻找机会为企业省钱,或者发现新的价值流。我们经常是正确的,因为我们不仅了解业务,我们还有数据支撑我们的观点。

这就是有一个与企业步调一致的数据团队的价值之一。他们有推动决策的数据。

数据工程

有个方面有时候会完成得比较仓促,那就是数据工程。它可能看上去不重要,可能看上去很容易修改。但是,如果数据的设计规划不便于操作和开发,那么数据科学家在设计算法和下游工作流时会陷入时间地狱。

这是indeed.com 上数据工程师的职位需求占比高于数据科学家的原因之一。

数据的组织方式在分析方面非常重要。我们团队有几名成员最初就是数据工程师,这就是为什么他们如此重要。他们不仅能够创建优美的算法,还能够创建数据管道,让数据能够自然地从点A 到点B,从数据仓库到算法。

经过良好设计规划的数据易于修改,容易接入新模块及报告新指标,等等。它可能看起来奇怪,但借助良好的数据工程,一切都是有可能的!

系统设计也是为了数据科学家

设计算法的时候很容易忘记,设计结果是需要真正地在生产环境中实现的。

数据科学家不能只是设计算法并就此止步。相反,那通常需要某种形式的数据仓库或数据存储中心,而且作为一个系统,既提供数据,又记录来自开发好的模型的数据。算法不是一个本身可以创造美元的独立岛屿。

通常也会有一些某种形式的接口,用户可以与之交互。

举例来说,这可能是一个网站或者一个故事板。其目的是让终端用户对直接传达给他们的东西有可行且可理解的见解,而不用他们转换模型产生的随机数和输出。

当我们只是在课堂上做一个Kaggle 题目或者创建一个项目时,这会被忽略。这就是为什么像Galvanize 这样的项目会让他们的学生和实际的企业建立合作伙伴关系,因为将一个算法投入生产环境所需要完成的工作比只是开发它要多。

需要操作老系统,筛选API 文档,还有缺陷、变通方案,当然还有公司政治。

公司政治,是的,你会卷入的

企业总是有政治,没有办法可以绕过。数据科学高管和项目负责人需要能够和其他团队共事,像其他部门一样筹集资金。

这需要了解其他高管想要什么又需要什么,务必保证他们支持你的项目。如果他们不支持你的项目,如果他们等待机会背后捣鬼(而且那种情况出现了),那么你的项目就会失败。

不要控制,而是要引导其他团队的负责人,让他们同意你的观点,或交换方案,或折中方案。务必确保你没有触到任何人的痛点……至少,在你的数据团队多次证明自己之前不要。即使已经多次证明过自己,也不要让自己变得难以共事。

否则,没有人会为你的业务团队提供资源。

文档是数据团队的朋友

好吧,有件事85% 的程序员都得承认,就是他们讨厌文档。没关系,这不是最有趣的事。不过,坚持编写文档非常重要。

不要等项目结束了再写文档!!!

数据科学算法、数据结构、软件都需要不断地记录到文档上。

没有人要求数据团队再写一本《汤姆·索亚历险记》。务必保证注释清晰易懂,任何程序员都可以理解。

你永远不知道一个团队成员何时会离开,从而留下一堆进行到一半而又没有文档的项目。

因此,为了保持可维护性,务必让你的数据团队随着项目进行编写项目文档。那会让你的团队节省大量处理技术债务的时间,并确保你的项目可以继续运转下去。

数据科学项目需要有软件QA 和生命周期

数据科学是软件开发的一部分。就是说,需要有一个流程来确保开发出的代码健壮、可维护。

怎么做?

针对代码和数据设定一个不错的 QA 流程,确保代码从开发环境进入生产环境有一个标准化的流程。

不,你不应该在生产环境中测试代码!

问题就是那样出现的!!!

不要误解我们的意思,你需要推出代码,但不能以破坏构建为代价。

同行审查、QA 和单元测试可以帮数据团队避免许多麻烦。确保不要出现持续的干扰,如一名工程师花很长的时间对其他人的代码进行同行审查。

同时,确保你没有让开发出的代码直接进入生产环境里!!

算法不是数据科学的全部

事实上,数据科学和分析并不是一颗魔弹。它只是另外一种工具,企业可以用它增加收益,降低成本。如果运营得当,它会产生巨大的竞争优势。如果数据设计规划良好,那么团队其他的业务也会运转良好。

查看英文原文 Practically Managing A Data Science Team


感谢蔡芳芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-08-21 19:001980
用户头像

发布了 1008 篇内容, 共 393.2 次阅读, 收获喜欢 345 次。

关注

评论

发布
暂无评论
发现更多内容

产品思维和产品意识-利益相关方学习总结

mas

我用PHP写的第一个Hello world

熊斌

28天写作

keepalived 实现Nginx高可用安装

庞小辉

计算机网络学习第一课

落曦

【总结】产品经理训练营 | 02 产品思维和产品意识(上、中)

阿席达卡。

趋势预测:2021年五大流行的编程语言

禅道项目管理

Java php python 爬虫 趋势

GO 进阶学习笔记

zach

微服务 Go 语言

面试官常问的垃圾回收器,这次全搞懂

Silently9527

Java JVM 垃圾回收 GC

【年度重磅】2020华为云社区年度技术精选合集,700页+免费下载!

华为云开发者联盟

数据库 AI 云原生 物联网 华为云

智能building 之智慧城市

张老蔫

28天写作

娄底携手浪潮,打造了智慧城市建设的“娄底样板”

30+岁、没转管理、加不动班,我的竞争力从哪里来?

博文视点Broadview

红帽架构师:为什么KubeEdge是2020年我最喜欢的开源项目?

华为云原生团队

开源 云原生 边缘计算 边缘技术

架构师训练营-大作业:物流系统架构设计

晴空万里

架构师训练营第2期

从定义到AST及其遍历方式,一文带你搞懂Antlr4

华为云开发者联盟

Java AST 语言 antlr4 语法分析器

开发的必杀技:Git 的分支管理

华为云开发者联盟

git Linux 分支

利益相关方分析-公司及团队维度

梁媛

产品经理

第 2 周作业

老元宵

你以为阿里真的取消周报了?

Ian哥

28天写作

Kubernetes Pod篇:带你轻松玩转Pod

xcbeyond

Kubernetes pod 28天写作 Kubernetes从入门到精通 服务编排

八大案例带你了解图数据库如何洞察数据间关联价值

NebulaGraph

图数据库 图数据库实战

数据库覆盖式数据导入方法:部分和完全

华为云开发者联盟

数据库 sql 数据 DWS 覆盖式导入

产品经理训练营第二章作业——利益相关者

阿波

Android Styling System

Changing Lin

android

第二周作业

Geek_6a8931

【图文并茂,点赞收藏哦!】重学巩固你的Vuejs知识体系

我是哪吒

程序员 面试 Vue 大前端 Web

年底想跳槽?先想清楚自己要什么。

一笑

面试 工作 28天写作

GNUCash 4: 我的使用经验

lidaobing

GNUCash 28天写作

智能汽车如何赚钱? (28天写作 Day19/28)

mtfelix

商业模式 28天写作 智能汽车 软件定义汽车

信任是一种需要牺牲效率持续发出的信号

Justin

心理学 信任 市场营销 28天写作

屏幕共享功能的应用

anyRTC开发者

android 音视频 WebRTC 在线教育 视频会议

数据科学团队管理实战_大数据_SeattleDataGuy_InfoQ精选文章