在近期的 AWS re:Invent 大会上,Amazon发布了Amazon Lex 的预览版本。Amazon Lex 中应用了它们的深度学习技术。同样的技术已用于Alexa,用在蓝牙和Wi-Fi 环境中可移动的 Amazon Echo 扬声器中。
Amazon Echo 是一款面向消费市场的产品,AWS 高级经理 Vikram Anbazhagan 将该产品定位为:
一种使用语言和文本构建对话接口的新服务。
在 Amazon Lex 内部,自然语言理解(Natural Language Understanding,NLU)和自动语音识别(Automatic Speech Recognition,ASR)为开发人员提供了提交文本或音频并接收服务所反馈文本的能力。这类称为“机器人”(Bot)的对话应用可使 Facebook Messenger 或 Slack 等聊天软件与智能后台数据服务进行交互。例如,开发人员可开发一个聊天应用,让用户可以询问天气预报情况。其中用户所发出的请求由 Amazon Lex 使用 ALU 进行解释,形式化为结构化查询,进而提交给使用 AWS Lambda 的天气预报服务,并将结果返回给调用应用。
图片来源:(视频截图) https://www.youtube.com/watch?v=ZdeK8HnhKQ8
为帮助开发人员解决在聊天机器人应用开发中所共同面对的挑战,Amazon 已经提供这种服务,解决了以下的问题:
- 语音识别
- 语言理解
- 扩展性
- 安全
- 业务逻辑
- 移动性
- 测试
- 消息平台
- 异构系统
开发人员可以通过关联多种 AWS 服务以及其它基于 SaaS 的服务构建应用,并接入到其它的一些生态系统中,包括:
- Salesforce
- Microsoft Dynamics
- Zendesk
- Marketo
- HubSpot
- Quickbooks
为实现这种集成,开发人员可使用 Amazon API Gateway、AWS Lambda 或是 Mobile Hub SaaS Connector,也可使用 Amazon Virtual Private Cloud(VPC)连接去关联预置应用。
图片来源:(视频截图) https://www.youtube.com/watch?v=I5OlTMLinio
Amazon给出了 Amazon Lex 中所定义的一些主要概念,诠释了该服务的底层机制,其中包括:
- 机器人(Bot)。“机器人”中包括了会话中的所有组件。
- 意图(Intent)。“意图”表示机器人用户想要达到的目标(例如购买机票、预约会面或是获取天气预报,诸如此类)。
- 表述(Utterance)。用户所说的或是所输入的一条短句就构成了一个“表述”,它会生成一个“意图”。两个简单的例子就是“我要预定酒店房间”和“我要订花”。
- 数据槽位(Slot)。为实现“意图”,用户必须提供的一部分数据,这些数据称为一个“槽位”。“槽位”是有类型的,例如一个旅行机器人中可能会具有城市、州或机场等“槽位”。
- 提示(Prompt)。“提示”是为实现“意图”而向用户请求提供数据(或是数据槽位)的问题。
- 实现(Fulfillment)。“实现”是一种业务逻辑,具体落实用户的意图。Lex 支持在“实现”中使用 AWS Lambda 服务。
开发人员可以使用以上概念构建交互的机器人应用,实现多种多样的“意图”。如此使用机器人解决用户意图问题的实例包括:新闻和天气更新、预定酒店和航班、管理银行账户、将可穿戴设备连接到后端物联网平台等。
图片来源:(视频截图) https://www.youtube.com/watch?v=I5OlTMLinio
机器人框架和深度学习正得到业界的极大关注。仅在 Facebook 平台上就有超过 1.1 万的聊天机器人。在 2016 年 11 月,Microsoft宣布其机器人即服务的云产品可以接入到很多交谈平台中,例如Slack、Skype、Microsoft Teams 和Twilio 等。在今年的Google I/O 开发者年会上,Google发布了Allo,一个嵌入了机器学习技术的智能聊天App。还有最新发布的 Google Home ,一款类似于 Amazon Echo 的面向消费市场的智能助理产品。
现在 Amazon Lex 在美国东部地区(北弗吉尼亚)可作为预览使用。Amazon 提供了首年免费试用,此后将采用使用限制和根据使用情况收费。
查看英文原文: Building Conversational and Text Interfaces Using Amazon Lex
感谢张卫滨对本文的审校。
给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ , @丁晓昀),微信(微信号: InfoQChina )关注我们。
评论