QCon北京「鸿蒙专场」火热来袭!即刻报名,与创新同行~ 了解详情
写点什么

Honeycomb - 调试复杂系统的工具

  • 2016-11-07
  • 本文字数:1660 字

    阅读完需:约 5 分钟

Honeycomb 是用于观察和关联分布式系统中各事件的工具。它的方法与现有工具(例如 Zipkin )不同。Honeycomb 由原有的单一请求跟踪模型转变为更自由形式的模型,能够跨层 (layers)、跨维度 (dimensions) 地收集和查询数据。

Honeycomb 与 Zipkin 这样的软件有什么区别?Zipkin 是基于 Google Dapper paper 的分布式跟踪系统,由Twitter 编写和开放源代码。InfoQ 近日与Honeycomb 联合创始人Charity Majors 联系,了解到该产品的更多信息。Majors 指出,与使用全球唯一的UUID 进行请求跟踪不同,“对大家来说通常更有用的是某种用户ID 或应用程序ID,以及其他类型的ID。这些请求ID 便于将具有您可能想要计算或聚合的共同特征进行分组。”

这在实践中意味着什么?基于如Zipkin 之类的跟踪工具的请求,假设每个请求都附有唯一的ID。从请求进入系统的时间起,ID 通过各种子系统调用(可用于微服务)来传递,而子系统调用是由初始调用的结果触发的。如果在每个步骤都记录下此ID,并且设定中心区域来聚合和索引这些日志,那么在请求ID 已知的前提下,在系统中搜索和跟踪特定请求将变得很容易。这种日志聚合器的一个典型例子是ELK( Elasticsearch/Logstash/Kibana )。

Honeycomb 打破了这种模式,尽量在每个级别分别获取数据(如负载均衡器、微服务和数据库),标记数据,便于用户今后对这些数据进行混合匹配(mix-an-match)和即时查询 (ad-hoc queries)。Majors 解释说,Honeycomb 采用这种方法是因为跟踪本身给你留下一个亟待解决的问题。这个问题就是“哪些是有代表性,值得首先研究的请求”。一旦用 Honeycomb 展示数据,用户可以跨系统、跨时间,将不同层的数据联系整合,进行运算,从而理解它的性能。例如,跨越多个系统的请求响应时间的增加可能是由于来自多个因素(包括时间)的集体效应。这不利于请求跟踪,因为请求一般代表的是给定时间段内相关事件的单个线程。

数据一般可以通过 API 调用发送到 Honeycomb。以下示例表示如何用 API 调用来记录 Web 请求数据:

复制代码
curl https://api.honeycomb.io/1/events/Quickstart -X POST \
-H "X-Honeycomb-Team: YOUR_WRITE_KEY" \
-d '{"status":200,"path":"/docs/","latency_ms":13.1,"cached":false}'

在这个例子里, “-d”参数可用于获取 JSON 对象。这个 JSON 对象具有便于以后查询的任何应用程序特定信息。数据收集为一系列事件,对于其中每个事件都应该进行跟踪。这些事件可以捆绑成名为“数据集”的单个实体。Honeycomb 可以通过所谓的“连接器”与应用程序集成。连接器是从特定软件中提取数据并将其发送到Honeycomb 的适配器。用户还可以使用 SDK 以及名为 honeytail 的工具将数据从现有日志集成到 Honeycomb。

为了:给正在收集的数据添加上下文,Honeycomb 还标记各事件是由谁触发的:是操作员还是像计划任务 cron 之类的什么(部署、脚本或一次性动作)。这些操作垂直排列,上面附加了一些信息,例如谁运行脚本以及指向部署代码的链接。这有点类似于 Etsy 的运营团队使用 Grap hite 的情况(但 Graphite 缺乏相应的背景信息)。

Honeycomb 收集了大量数据,那它是如何处理大规模查询的呢?Majors 说,由于接近 100% 用户发出的查询都是关于最近一两个星期的,他们现在正专注于近期的调试任务,以便于采用有效的抽样保留技巧。

为了处理大量的数据,Honeycomb 使用自己的列存储:

Majors 说,我们开始构建 Honeycomb 时研究了大量现有的解决方案,但没有一个能完美解决问题。我们最终发现,绝大多数的预构建解决方案都需要对功能性进行权衡,在那些我们不需要的功能(例如事务)和牺牲那些我们认为至关重要的功能(例如能够快速访问原始输入事件)之间取舍。

Honeycomb 目前还不支持与其他告警系统集成,如 Nagios、Zabbix、PagerDuty。目前只有受邀请者可以注册该服务。

查看英文原文 Honeycomb - A Tool for Debugging Complex Systems


感谢冬雨对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-11-07 18:002881
用户头像

发布了 22 篇内容, 共 54889 次阅读, 收获喜欢 3 次。

关注

评论

发布
暂无评论
发现更多内容

现在有没有可以真正称得上是元宇宙的应用?

InfoQ IT百科

InfoQ 入驻快讯

Apache IoTDB

Apache IoTDB

中商惠⺠交易中台架构演进:对 Apache ShardingSphere 的应⽤

SphereEx

Apache 数据库 ShardingSphere SphereEx

研讨会回放视频:如何提升Jenkins能力,使其成为真正的DevOps平台

龙智—DevSecOps解决方案

CI/CD CloudBees

2020年4面美团(多线程+redis

爱好编程进阶

Java 面试 后端开发

剖析GPU未来发展方向

Finovy Cloud

人工智能 云服务器 GPU服务器 GPU算力

精彩联动!OpenMLDB Pulsar Connector原理和实操

第四范式开发者社区

机器学习 数据库 特征 特征平台 连接器

Alibaba内部流行的“Java突击宝典”

爱好编程进阶

Java 面试 后端开发

Docker镜像超详细介绍

爱好编程进阶

Java 面试 后端开发

企业官网有啥用?一定要搭建官方网站吗?

源字节1号

微信小程序 网站开发

“如何实现集中管理、灵活高效的CI/CD”在线研讨会精彩内容分享

龙智—DevSecOps解决方案

CI/CD CloudBees

2021金九银十最新338道大厂Java架构面试高频题目+答案详解

爱好编程进阶

Java 面试 后端开发

Ceph实战(一)-分布式存储介绍与原理架构概述

爱好编程进阶

Java 面试 后端开发

星汉未来成为FinOps产业推进方阵共建单位

星汉未来

运维 云原生 星汉未来 FinOps

龙智被评估为CMMI [3] 级

龙智—DevSecOps解决方案

CMMI 龙智

36天突击腾讯终拿Offer! Redis、高并发

爱好编程进阶

Java 面试 后端开发

为什么各大APP都推出了适老版?

InfoQ IT百科

从B站和小红书看,如何做好社区产品?

InfoQ IT百科

阿里超大规模 Flink 集群运维体系介绍

Apache Flink

大数据 flink 编程 运维 实时计算

解决方案| 快对讲调度系统:高效协作

anyRTC开发者

音视频 调度 实时通讯 实时消息 对讲

教你轻松解决CSRF跨站请求伪造攻击

华为云开发者联盟

CSRF 信任 攻击 跨站请求伪造 跨站

有道词典Android客户端包体积优化之路

有道技术团队

andiod Groovy

二进制文件版本控制工具选择难?看完这篇你会找到答案

龙智—DevSecOps解决方案

perforce Helix Core

53w字!阿里首推系统性能优化指南太香了,堪称性能优化最优解

爱好编程进阶

Java 面试 后端开发

星汉未来云原生基础治理平台SchedulX V1.1.0 重磅发布,助力企业降本增效

星汉未来

运维 云原生 k8s 智能运维 星汉未来

一文了解全面静态代码分析

龙智—DevSecOps解决方案

perforce Helix QAC

2021最新最全Java基础高频面试题汇总(1W字详细解析)

爱好编程进阶

Java 面试 后端开发

如何快速搭建一个像叮咚买菜这样的APP?

InfoQ IT百科

机器学习算法和架构在MLOps框架下的工程实践

博文视点Broadview

星环科技基础软件产品全面落地开花,为企业数字化转型带来“星”动能

星环科技

最佳实践 | 通过使用 Jira Service Management 改进 HR 工作流程

龙智—DevSecOps解决方案

Atlassian jsm

Honeycomb - 调试复杂系统的工具_DevOps & 平台工程_Hrishikesh Barua_InfoQ精选文章