产品战略专家梁宁确认出席AICon北京站,分享AI时代下的商业逻辑与产品需求 了解详情
写点什么

获取数据科学需要的数据

  • 2016-09-08
  • 本文字数:1679 字

    阅读完需:约 6 分钟

Lukas Vermeer 是一名经验丰富的数据科学专家,同时也是 Booking.com 试验部门产品负责人。他认为,数据科学和你需要的数据有关;决定收集、创建或保留什么数据是基础。真正的创新始于提出重大的问题,然后就很容易知道需要哪些数据才能找到你寻找的答案。在 GOTO 阿姆斯特丹 2016 大会上,Vermeer 探讨了数据科学与数据炼金术。

Christine Doig 是 Continuum Analytics 的高级数据科学家。她在文章“作为一门团队学科的数据科学”中将数据科学定义为:

我喜欢将 [数据科学] 想象成胶水,它将不同领域和思路粘合在一起,通常用于解决数据相关的问题,并将信息转换成知识和可行的见解。

在 InfoQ 文章“ 2016 年数据科学家将扮演什么角色”中,Ed Jones 解释了为什么大数据和数据科学很重要:

我们已经处在大数据时代,这是无法改变的事实。随着数据量与日俱增,从这些数据中提取出价值的工作只会慢慢变得更加复杂和困难。大数据经济背后的逻辑,正在以无法想象或预测的方式重塑我们的生活;我们做出的每一个电子操作都将产生数据,并留下与自己生活相关的蛛丝马迹。

Vermeer 表示,“我们希望检验一下,人们是否喜欢我们对网站所做的修改”。Booking.com 借助试验和其他形式的数据收集不断地改进他们的网站,创建更好的客户体验。

Vermeer 指出,“你可以拥有大量的数据,但如果你不知道能用它们干什么,那就没有用。”更多的信息并不一定形成更好的决策。数据科学和你需要的数据有关,通常,那和你拥有的数据不同。Vermeer 说,科学受数据所限,而数据为工程技术所限。你必须考虑如何创建所需的数据,以便能够取得进展。

在演讲中,Vermeer 使用了太阳系科学史上的例子。为了展示数据如何为工程技术所限,他回顾了天文学研究的一段历史。托勒密没有发现科里奥利效应和恒星视差,因为他没有足够准确的测量设备,而且这两种效应都非常微弱。除了其他因素之外,缺少证据让他得出了地球不动这个结论。对于托勒密而言,有关这两种效应的数据明显是受当时的工程技术所限。关于这一点,回顾过去更容易看出来,但同样适用于今天。

Vermeer 认为,模型并非必不可少,但如果它们有助于预测未来,就是有用的。可能有多个模型可以解释已有的数据。但你无法使用自己拥有的数据证明哪个模型正确。确定哪个模型更接近真相需要你收集新的数据。

Vermeer 提到了 Kaggle.com。这是一个数据科学家社区,从中你可以学到如何解决复杂的数据科学问题,结识其他的数据科学家。

你可以通过分析客户评论并查找关键词(比如可以表明人们喜欢或不喜欢旅馆的词语)进行情感分析。但是,你也可以在评论表单里提供两个输入框,一个用于输入人们喜欢的东西,一个用于人们不喜欢的东西。Vermeer 表示,这种方法就解决了数据收集时的情感分析问题。

Vermeer 建议考虑你能够创建的数据。如果这份数据与已有的数据部分重叠,你可以选择保留那份数据,或者在需要的时候重新创建。成本和风险(比如泄露个人身份信息(POII)数据)是决定保留或重建的两个主要原因。保留数据的成本显而易见。可能还有其他方面的考虑,这取决于现有的数据。

也会有你需要但是无法获得的数据。作为一种解决方案,你可以使用代理数据:和你需要的数据相关而又可以获得的数据,那样,你就可以用它替代需要的数据。

Vermeer 举了一个例子。Booking.com 举办了一个邮件发送活动,使用个性化设置向旅行者宣传旅游目的地。有些客户认为,邮件的措辞令人害怕,因为它让他们觉得,有人逐个分析了客户过去的购买记录,才提出了那样的建议。实际上,那些建议是基于一个机器学习模型,而不是人的判断。在下一次活动中,邮件文本重新措辞,在没有对预测模型做任何修改的情况下,效果提升了两倍。

Vermeer 表示,由于数据科学是一门科学,而不是炼金术,所以决定收集什么数据以及如何收集是基础步骤。

“犯了错,你能承担得起吗?”“你可以不知道吗?”这是演讲结束时 Vermeer 向听众提出的问题。他引用了伏尔泰的一句话:“判断一个人凭的是他的问题而不是他的回答。”如果人们提出的问题让我思考以前从未想过的东西,那很好,Vermeer 如是说。

查看英文原文 Getting the Data Needed for Data Science

2016-09-08 19:001665
用户头像

发布了 1008 篇内容, 共 390.0 次阅读, 收获喜欢 344 次。

关注

评论

发布
暂无评论
发现更多内容

猿灯塔-Phaser 使用介绍

猿灯塔

油管博主路透 3080Ti 参数、黄教主烤箱中拿出 DGX A100 预热发布会

神经星星

人工智能 互联网巨头 gpu 互联网 英伟达

回顾经典,Netflix的推荐系统架构

王喆

人工智能 学习 推荐系统 netflix

线程通信知识点扫盲!

Simon郎

Java 后端 多线程

怀念小时候吗?

安静的下雪天

个人感想

AtomicStampedReference是怎样解决CAS的ABA问题

捉虫大师

Java

游戏夜读 | 关卡设计为什么难?

game1night

Flink Weekly | 每周社区动态更新

Apache Flink

大数据 flink 流计算 实时计算

Android10版本引发的生产故障及安全知识归纳

大刘

android https TLS 加解密

定在下午面试的那位候选人,说他不来了

Geek_6rptuk

团队管理 面试 简历优化 招聘

故障的传播方式与隔离办法

Wales Kuo

谈谈控制感(3):让孩子更好地成长

史方远

心理学 控制感 教育

什么是工作

史方远

随想 工作

全球经济动荡下,超流币逆袭而来!

极客编

一杯茶的时间,上手 React 框架开发

图雀社区

Reac

原创 | 使用JUnit、AssertJ和Mockito编写单元测试和实践TDD (六)测试哪些内容:Right-BICEP

编程道与术

Java 编程 软件测试 TDD 单元测试

选择适合自己的 OLAP 引擎

程序员小陶

大数据 开源 OLAP

ThreadLocal到底会不会内存泄漏?实战直接告诉你答案!

刘超

Java 多线程 ThreadLocal

高仿瑞幸小程序 08 创建第一个云函数

曾伟@喵先森

小程序 微信小程序 大前端 移动

前浪的经验:区块链软件,一定也要去中心化

WasmEdge

比特币 区块链 智能合约 以太坊 加密货币

终于有一款组件可以全面超越Apache POI

葡萄城技术团队

前后端分离 服务端 GrapeCity Documents

初探Electron,从入门到实践

葡萄城技术团队

大前端 Electron SpreadJS

全面解读信创行业 关注国产操作系统

统小信uos

操作系统

ZigBee3.0 节点入网流程分析

taox

网络协议

我为什么要开启InfoQ写作

Nick

需求是被挖掘还是被创造出来的?

Neco.W

产品 互联网 需求

如何快速更改qcow2镜像文件

奔跑的菜鸟

云计算

一文读懂阿里云通信的产品体系、技术架构与智能化应用场景实践

阿里云Edge Plus

人工智能 云通信 短信 语音 智能联络中心

Tomcat安全配置

wong

Tomccat security

由纪念日想到杨德昌

Elizen

随笔 电影

物联网技术栈之网关技术

老任物联网杂谈

物联网网关

获取数据科学需要的数据_大数据_Ben Linders_InfoQ精选文章