2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

Lambda 架构实现数据实时更新

  • 2016-04-12
  • 本文字数:2395 字

    阅读完需:约 8 分钟

当前股票市场的交易者可以了解丰富的股票交易信息。从金融新闻到传统的报纸和杂志再到博客和社交媒体,汇聚着海量的数据,远比股票交易者想关注的股票信息要大得多,这就需要为股票交易者提供信息的有效过滤。这里将开发一个新闻服务给股票证券投资交易者使用,并为股票交易者提供个性化新闻。

这个新闻服务就叫“自动获取金融新闻”,输入各个数据源的金融新闻,也同时输入用户实时股票交易信息。不管何时,在股票交易者所拥有资产证券中占比较大的公司,它们的新闻一到达,将会显示到股票交易者的仪表板上。随着大量股票交易者进行交易,相应的交易信息会发送过来,所以希望拥有一个大数据系统来存储所有交易者的历史交易信息作为真实数据源,然而,处理海量数据会非常慢以至于不能进行实时的数据更新。为了达到实时跟踪和维持数据结果为最新这两个要求,可以采用Lambda 架构来实现。

Lambda 架构优势

在传统 SQL 系统,更新一个表只是对已存在字段的值进行更改,这在少量的服务器上的数据库工作的很好,可以水平扩展到从库或者备份库。但是当数据库扩展到大量数据服务器上时,硬件崩溃等情况下恢复数据到失败点就比较困难和耗时,而且由于历史不在数据库中,仅仅存在 log 日志,数据崩溃将导致一些不可见的数据错误,即脏数据。

而相对应地,一个分布式、多副本消息队列的大数据系统可以保证数据一旦进入系统就不会丢失,即使在硬件或者网络失败的情况下。存储更新的所有历史可以重建真实的数据源,并能保证每次批处理之后结果正确,然而,为了在实时数据更新后得到最新完整的数据集,需要重新处理整个历史数据集,将会耗费太长的时间。为了解决这个问题,可以在 Lambda 架构中增加一个实时组件,此组件只存储数据更新的当前值,可以保证快速实时得到结果,工作过程类似于传统的 SQL 系统。实时处理层的脏数据将会被后续批处理覆盖掉,这个高可用、最终一致性的系统可以实现准确的结果。当前值的任何错误,实时处理层的报告,硬件或者网络错误,数据崩溃,或者软件 Bug 等将会在下一次批处理时自动修复。

自动获取金融新闻项目的数据管道

整个数据管道流动如图 1:

图 1

输入数据格式为 JSON,主要来自综合交易信息和 Twitter 新闻。JSON 格式的消息会 push 到 Kafka,并被批处理层(batch layer)和实时处理层(real-time layer)消费。使用 Kafka 作为数据管道的输入起点,是因为 Kafka 可以保证即使在硬件或者网络失败的情况下,消息也会被传输到整个系统。

在批处理层, Camus (Linkin 开源的项目,现已更名为 Gobblin )消费所有 Kafka 过来的消息并保存到 HDFS 上,然后 Spark 处理所有的交易历史计算每个股票交易者持有的股票准确数量,对应的结果会写入 Cassandra 数据库。

在流式处理层,Spark Streaming 实时消费 Kafka 消息,但并不像 Storm 那样完全实时,Spark Streaming 可以达到 500ms 的 micro-batch 数据流处理。Spark Streaming 可以重用批处理层的 Spark 代码,并且 micro-batch 数据流处理可以得到足够小的延迟。

批处理层和实时处理层的结果都会写入到 Cassandra 数据库,并通过 Flask 提供一个 web 接口服务。随着海量交易数据写入系统,Cassandra 数据库的快速写入能力基本可以满足。

实时处理层和批处理层的调度

当最新的消息进入大数据系统,web 接口提供的结果服务总能保持最新,综合批处理层和实时层的处理结果。用一个列子来展示如何简单的使用批处理结果和实时处理结果。

从下图 2 看到,有三个数据库表:一个存储批处理结果(图 2 中 Batch 表);一个存储自上次批处理完成时间点到当前时间的实时交易数据,即增量数据(图 2 中 Real Time 2 表);另外一个存储最新数据,即状态表(图 2 中高亮的 Real Time 1 表)。

任何软件、硬件或者网络问题引起批处理结果异常,都通过单独一个数据库表记录数据增量,并在批处理成功后更新为对应的批处理结果数来保证最终数据一致性。

在这个列子中,假设第一轮批处理起始时间点为 t0,一个交易者做了一笔交易后获得了 3M 公司的 5000 股股票。

图 2

在 t0 时间点,批处理开始,处理完之后最新结果存储在 Real Time 1 表,当前值为 5000 股。

图 3

在批处理过程中,交易者卖掉 3M 公司 1000 股股票,Real Time 1 表更新数据值为 4000 股,同时 Real Time 2 表存储从 t0 到当前的增量 -1000 股,如图 4 所示。

图 4

当批处理结束,三个表的值分别为 5000,4000,-1000。这时,交换 active 数据库表为 Real Time 2 表,进行合并批处理结果和实时结果获得最新结果值。然后重置 Real Time 1 表为 0,后续用来存储从 t1 时间点开始的增量数据。接下来新的一轮以存储最新数据的 Real Time 2 表为起点,循环前面的过程。

图 5

图 6

图 7

以上每步处理过程完全成功并写入数据库,可以保证展示给交易者的数据准确性。数据集 处理时间取决于数据集大小,处理任务的计划按序处理而不是按自然天时间。在一个系统中需要工作流支持复杂处理、多任务依赖和资源共享。这里采用 Airbnb 的项目 Airflow ,可以调度程序和监控工作流。Airflow 把 task 和上游各种依赖构建成一个有向无环图(DAG),基于 Python 实现,可以把多个任务写成 Bash 脚本,Bash 命令能直接调用任何模块,并且 Bash 脚本可以被 Airflow 使用,这样使得 Airflow 易操作。Airflow 编程接口比基于 XML 配置的调度系统 Oozie 简单;Airflow 的 Bash 脚本编码量比 Luigi 要少很多,Luigi 的每个 job 都是一个 python 工程。每步合并实时和批量数据的 job 运行都是前一步成功完成退出后。

最后简单总结一下,Lambda 架构涉及批量处理层和实时处理层处理历史数据以及实时更新的数据。 为了 Lambda 架构的实现切实可行,数据处理要设计成批处理层和实时处理层结合。本项目中,有一个“备用”数据库表仅仅存储输入的总数,而不从批处理层读取数据,并允许对批处理层和实时处理层的结果进行简单的聚合。以上就是用 Lambda 架构实现的一个高可用、数据最终一致性的系统。

2016-04-12 19:007472
用户头像

发布了 43 篇内容, 共 31.2 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

狂刷《Java权威面试指南(阿里版)》,冲击“金九银十”有望了

Java 编程 架构 面试 程序人生

GitOps系列|云原生时代,你还不懂GitOps?

极狐GitLab

security CI/CD gitops

分享 | RadonDB 的开源之路(4 千字长文)

RadonDB

MySQL 数据库 RadonDB

性能优化之分页查询 | StartDT Tech Lab 12

奇点云

浅谈元数据采集 | StartDT Tech Lab 10

奇点云

一个不起眼却非常实用的功能介绍

ThingJS数字孪生引擎

大前端 物联网 可视化 数字孪生

开源贡献分享:从网关内服务健康检查说起 | StartDT Tech Lab 09

奇点云

基于OLT(实体、关系、标签)建模方法论的最佳实践 | StartDT Tech Lab 08

奇点云

浅谈对象体系 | StartDT Tech Lab 07

奇点云

写了一年golang,来聊聊进程、线程与协程

捉虫大师

线程 进程 协程 Go 语言

成为优秀架构师需要具备哪些能力?

卢卡多多

架构师 服务 9月日更

量化交易系统软件开发(源码)

Geek_23f0c3

量化交易机器人系统开发 量化策略 智能量化交易软件

打爆怪兽 一起来养猪 养蜂人 幸福饭店 山海经 弹球 旅行世界

游戏开发_软件开发

灰度再度增持!!!Filecoin可投资吗?Filecoin值得投资吗?

区块链 分布式存储 IPFS 投资filecoin filecoin值得投资吗

市值管理机器人特点简析,交易所刷交易量机器人搭建

量化系统19942438797

市值机器人 市值管理

如何优雅地设计DWS层? | StartDT Tech Lab 17

奇点云

大数据安全验证之Kerberos | StartDT Tech Lab 11

奇点云

TCP传输控制协议(二)

姬翔

9月日更

TLS协议分析 (九) 现代加密通信协议设计

OpenIM

数据仓库领域常见建模方法及实例演示 | StartDT Tech Lab 16

奇点云

26岁!月薪38k,全靠这份GitHub百万下载的阿里P5-P9知识核心手册

Java~~~

Java 架构 面试 微服务 多线程

分布式任务调度的应用分享 | StartDT Tech Lab 13

奇点云

浅谈单点登录SSO实现方案 | StartDT Tech Lab 06

奇点云

模型工厂,让AI算法触手可达 | StartDT Tech Lab 05

奇点云

操作系统的IO模型

Java 程序员 架构 操作系统 计算机

为什么在 Windows 下用 Ctrl+Z 退出 Python 而 Linux 下用 Ctrl+D 呢?

小拍Piper

Python Linux windows

DataMaleon组件化开发实践 | StartDT Tech Lab 14

奇点云

实用?HUAWEI高工总结出15W字的图解计算机操作系统指南手册

Java~~~

Java 架构 面试 TCP 网络协议

清华大牛带领20位大厂专家耗时三年整理出这份2000页Java进阶指南

Java~~~

Java 架构 面试 微服务 多线程

吃透HTTP原理,教你建立安全的HTTPS网站

博文视点Broadview

Rust从0到1-完结

rust

Lambda架构实现数据实时更新_语言 & 开发_侠天_InfoQ精选文章