QCon北京|3天沉浸式学习,跳出信息茧房。 了解详情
写点什么

一种新的对象识别算法:挑战机器学习现状

  • 2015-12-28
  • 本文字数:1916 字

    阅读完需:约 6 分钟

机器学习的基本原理是模型训练。对于人类来说,可以从单一的样例中学习到非常深刻的知识,例如变质的牛奶味道很差、火是热的等,但机器却需要更多的样例,因为它们是基于统计学的原理进行学习。机器学习的过程主要依赖于数据。

不过,今天这种现象或许开始要改变了。本周,一篇人工智能论文登上了《科学》杂志的封面,为人类带来了人工智能领域的一个重大突破,来自纽约大学的Brenden Lake、多伦多大学的Ruslan Salakhutdinov 和麻省理工学院的JoshuaB.Tenenbaum 共同开发了一个计算机系统:“只看一眼就会写字”。

Salakhutdinov 表示,人们一直试图构建一个机器系统,让其能够像人类一样,只需要很少的数据就能执行新的任务。“复制这些能力是一个非常令人期待的研究领域,其涉及到机器学习、统计学、计算机视觉和认知科学等学科”。大约十年前,Salakhutdinov 与他的导师 Geoffrey Hinton 一起发表了一篇文章,题目为“深度神经网络”。这个算法能够从 6000 个样本的数据中,学习到从 0-9 的 10 个书写体字符概念的结构。而在 Lake 等人最新的成果中,引入了一个贝叶斯程序学习(Bayesian program learning, BPL)框架,它是一个能够模仿人类思维方式的机器学习模型,即能够从单一样例中进行学习。这是一个“学会学习”(learns to learn)的模型。

这篇论文的第一作者 Brenden Lake 曾在 Tenenbaum 的团队中获得认知科学博士学位,如今他是纽约大学的博士后。根据 Lake 的介绍,这个模型能通过视觉图灵测试。

论文指出,“只需要通过简单的概念,人类就可以比机器学习到更丰富的表示,也可以将其用于更广泛的功能,例如创造新的样例,以及基于现有的类别创造出新的抽象类别。最好的机器分类器都不能执行这些功能”。

作者继续表示,“目前的主要挑战是解释人类层次的概念学习的两个方面”。“人类是如何从一个或几个样例中学习到新的概念的?人类又是如何学习这种抽象的、丰富的和灵活的表示的?”

机器学习模型是通过更多的数据而获得提高的,但人类似乎能够打破这个看似基本的原则。

根据论文所描述的,BPL 能够让计算机对人类认知进行很好的模拟。传统的机器学习方法需要大量的数据来进行训练,而这种方法只需要一个粗略的模型,然后使用推理算法来分析案例,补充模型的细节。

研究者设计的学习方法到目前为止都只是针对具体的字符识别任务,例如世界字符表中的手写字符。它的工作是按照算法指令生成一个给定字符的程序表示,算法指令是为了告诉用户如何重新生成字符。结果是泛化的一种类别,按照相同的指令产生字母,不同的用户可能会产生许多不同的变化,但它仍具有相同的基本标志。

文章中解释,该模型能够自然捕获真实世界过程的抽象的“因果”结构,产生一种类别的各种样例。该模型能够使用先前产生的概念程序中的原语,不仅识别字母的新样例,而且可以创造新的概念程序,例如新字母。

下面介绍模型的工作方式。给该算法一个以前从未见过的字符,让它尝试五次来解析字符,每一个都是一个新的方案(因此新的方案本身是算法生成的)。这些方案根据不同的概率每次创作不同的新的字符。正如你在视频中看到的,结果与真实人类书写的基本一致,因此,这项研究被打上了“人类层次概念学习”的标签。

那么,该模型怎样才能适用于一般的机器学习呢?

纽约大学的数据科学家告诉 Motherboard,“现在的算法只适用于手写文字,但我们确定了对模型性能很重要的三个核心原则,可能帮助在其他领域取得进展”。

第一个原则是“组合性”,如上所述,概念表示应该由简单的基元构建而成。第二原则是“因果性”,模型表征了真实世界中的对象生成的抽象因果结构。最后一个,是“学会学习”,过去的概念有助于学习新的概念。

Lake 说到,“这些原则可能有助于解释人类能够快速学习和使用其他类型概念的原因”。“我们尤其对一些学习新的口头语和学习新手势的应用感兴趣,当你听到一个人说过“潘基文”的名字,你基本上就懂了,并且能够识别其他人说起这个名字,同时自己也可以近似说出这个名字。同样的情况可以适用于手势。

多伦多大学和谷歌的人工智能先驱 Geoffrey Hinton 说这个研究“令人印象非常深刻”。他说,这个模型能通过视觉图灵测试,这很重要,是一个不错的成就。Hinton 是深度学习的奠基者。他近年来在深度学习方面取得了举世瞩目的成就,其研究成果被广泛应用在许多领域,例如语音翻译、图像识别以及谷歌的图像搜索和 Facebook 的人脸识别。


感谢董志南对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群InfoQ 好读者(已满),InfoQ 读者交流群(#2)InfoQ 好读者)。

2015-12-28 18:002737
用户头像

发布了 268 篇内容, 共 126.1 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

「融云政企数智办公解决方案」正式入选「大信创产品目录」

融云 RongCloud

打通对账的最后一公里——对账管理平台

元年技术洞察

数字化转型 对账 对账系统 方舟平台

云小课|创建DDS只读节点,轻松应对业务高峰

华为云开发者联盟

数据库 后端 华为云 企业号 2 月 PK 榜 华为云开发者联盟

2023年主流混合云管理平台排名榜单分享

行云管家

混合云 云管平台 云管理

java培训班怎样才能找到工作

小谷哥

StarRocks荣获2022年度最具潜力数据库奖

StarRocks

数据库 大数据

云原生数据库如何设计运维系统?

Greptime 格睿科技

数据库 运维 云原生

2013年的技术方向

且行且珍惜

2023计划

好友靠JVM成功进入阿里,阿里大佬力荐的JVM笔记到底有什么魔力?

小小怪下士

Java 程序员 面试 JVM 阿里

总结了6种卷积神经网络压缩方法

华为云开发者联盟

人工智能 华为云 企业号 2 月 PK 榜 华为云开发者联盟

一种基于图片搜索视频的方案

京东科技开发者

搜索 视频 图像 企业号 2 月 PK 榜 商品搜索

服务器双机热备软件是什么?有什么作用?有哪些?

行云管家

高可用 服务器 双机热备 服务器双机热备

零基础转行大数据,学习应该注意什么?

小谷哥

一文带你掌握物联网Mqtt网关搭建背后的技术原理

华为云开发者联盟

后端 物联网 华为云 企业号 2 月 PK 榜 华为云开发者联盟

云原生场景下实现编译加速

京东科技开发者

Java golang 缓存 编译 企业号 2 月 PK 榜

TiDB x 阿里云丨最长 30 天,最高节省 ¥33,000,免费试用云数据库 TiDB 的机会来啦!

PingCAP

TiDB

Apache Kafka入门级教程原创

宋小生

kafka Kafka Producer

Flomesh Ingress 使用实践(一)基础功能

Flomesh

负载均衡 API ingress Pipy

一文讲尽Thread类的源码精髓

华为云开发者联盟

开发 华为云 企业号 2 月 PK 榜 华为云开发者联盟

不愧是阿里内部都在强力进阶学习springboot实战派文档,这细节讲解,神了!

架构师之道

Java 面试 架构师 springboot

便捷模型迭代优化,算法模型支持更新到已部署服务、已有项目|ModelWhale 版本更新

ModelWhale

人工智能 机器学习 数据分析 团队协同 编程建模

大数据开发培训哪家比较好?

小谷哥

Canvas 模型服务,已支持直接使用“组件设置”作为模型参数输入|ModelWhale 版本更新

ModelWhale

人工智能 机器学习 数据分析 团队协同 编程建模

为什么你该试试 Sccache?

Databend

学术加油站|HIST,面向海量数据的学习型多维直方图

OceanBase 数据库

数据库 oceanbase

前端培训中怎么提升技术水平?

小谷哥

智能学习灯赛道竞争日趋激烈 火山引擎VeDI用数据技术助力打造新优势

字节跳动数据平台

大数据 增长 用户分析

橡树黑卡携手观测云,实现会员体系业务可观测

观测云

可观测性 可观测 观测云 可观测性用观测云

JavaScript使用URL用来解析处理URL

ModStart

探讨:30岁转行入IT,晚吗

MavenTalker

转型 职业发展 职业道路 个人思考

前端编程培训学习好就业吗?

小谷哥

一种新的对象识别算法:挑战机器学习现状_语言 & 开发_张天雷_InfoQ精选文章