写点什么

歌曲推荐系统实践:Pandas、SciPy 和 D3.js

  • 2015-05-07
  • 本文字数:1997 字

    阅读完需:约 7 分钟

时至今日,虽然海量数据、大数据、数据挖掘、个性化等名词术语已耳熟能详,仿佛谁人两两遇到都可以轻易写个挖掘系统出来,但情况真的是这样么? Flipboard 数据产品部门的工程师 Ben Frederickson 在与友人的讨论中就发现,写个推荐系统并没有那么轻而易举,为此他专门写了一篇博文来记录自己实现的整个过程,利用的工具是数据挖掘领域很热门的 Pandas SciPy 函数库,最后使用 D3.js 进行交互和可视化,相关的代码都放在了 GitHub 上。

具体来讲,一个推荐系统包括数据的获取和存储,相似度的计算以及最终结果的可视化,下面分别阐述。

数据获取

Ben 的推荐系统是针对 Last.fm 用户的,所用数据集是通过 Last.fm 的 API 获取的大约 36 万用户对歌手的喜爱程度。程度以用户对该歌手的播放次数为指标,数据集大小在 1 千 7 百万左右。想要在程序中使用这个数据集,ben 通过 Python 数据挖掘工具 Pandas 的 read_table 将 csv 格式的数据导入成为表格。

复制代码
data = pandas.read_table("usersha1-artmbid-artname-plays.tsv",
usecols=[0, 2, 3],
names=['user', 'artist', 'plays'])

将数据加载为表格以后,剩下的任务就是计算相似度了,ben 给出了三种相似度的计算方法,分别是简单的相似度计算,余弦相似度和来自信息学的相似度计算,并给出了各类方法最后的可视化比较。

简单相似度

简单相似度计算,顾名思义,是最简单的相似度计算方法,用来计算两个歌手的相似程度。这种计算方法,忽略歌手被用户播放的次数,只是简单计算两个歌手重叠的用户数目。

复制代码
def overlap(a, b):
return len(a.intersection(b))

这种计算方法的问题在于,那些流行的歌手的存在,会极大影响相似度的准确性。例如几乎每个用户都听过 Radiohead、Coldplay 和披头士,这使得简单相似度方法给出的答案里面,越是流行的歌手越相似。

为了解决这个问题,ben 引入了新的相似度定义, Jaccard 相似度,利用数据挖掘中常用的正则化(Normalize)手段,将简单相似度正则化,消除用户数目对歌手相似度的影响,具体计算方法如下:

复制代码
def jaccard(a, b):
intersection = float(len(a.intersection(b)))
return intersection / (len(a) + len(b) - intersection)

类似的正则化方法还有很多,比如 Dice 正则和 Ochiai 正则等,从一定程度上改善了相似度计算的准确性,但也带来了一点问题,即集合大小相近的歌手会更加相似,ben 觉得这样也并不合理,因此进一步提出了使用余弦相似度。

余弦相似度

上文中提到的简单相似度抛弃了用户对歌手播放次数这一重要信息,实际上它代表了用户对该歌手的喜爱程度,细想一下是非常有道理的,一个披头士的重度听众怎么能够跟听过寥寥几曲的听众一样呢?那么,利用上播放次数这一信息最直接的办法,就是余弦相似度方法,计算公式如下:

复制代码
def cosine(a, b):
return dot(a, b.T)[0, 0] / (norm2(a) * norm2(b))

通过上面公式,我们就可以将播放次数引入到相似度的计算中。公式中的 a 和 b 分别代表歌手的听众向量,通过下面的代码构造生成:

复制代码
# map each username to a unique numeric value
userids = defaultdict(lambda: len(userids))
data['userid'] = data['user'].map(userids.__getitem__)
# map each artist to a sparse vector of their users
artists = dict((artist, csr_matrix(
(group['plays'], (zeros(len(group)), group['userid'])),
shape=[1, len(userids)]))
for artist, group in data.groupby('artist'))

来自信息学的相似度

除了单纯利用播放次数以外,ben 还介绍了来自信息学的,确切来讲是来自搜索引擎中常用的自然语言处理技术,来计算歌手之间的相似度,即词频 - 逆文档频率(TF-IDF)作为向量的相似度计算方法。

这种相似度的发明,来自搜索引擎对检索结果排序的需求,即计算检索关键词与检索返回的文档之间的相似程度。具体来讲,如果某个词语在一个描述语句中出现的频率很高(TF 很高),而在其他描述语句中很少出现(IDF 很高),则认为该词语具有很好的区分文档的能力,其 TF-IDF 值就比较高,那么对应到歌曲推荐这个任务来讲,ben 将用户(听众)看作一个个的单词,来进一步考虑特定用户对相似度准确性的影响,可谓是三种方法中比较准确的一个了,ben 还在原文中用 D3.js 给出了几种相似度的效果对比分析。

总结

在专业术语充斥耳畔的今天,能够有耐心真正自己去尝试一些想当然的东西、算法甚至系统,是非常难能可贵的精神,而收获也是非常丰富的。Ben 以 Python 中常用的 Pandas 和 SciPy 等工具,展现了从头实现一个推荐系统的方法,正是这种精神的实践典范。


感谢崔康对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群)。

2015-05-07 08:094553
用户头像

发布了 268 篇内容, 共 124.5 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

一个使用 Shell 脚本实现的 Docker

ScratchLab

LRU 原理与算法实现

Ayue、

LRU

大数据培训Spark 高频面试考点分享

@零度

spark 大数据开发

居家办公更要高效-自动化办公完美提升摸鱼时间 | 社区征文

迷彩

Python AI 6月月更 初夏征文 Python自动化办公

开源一款监控数据采集器,啥都能监控

巴辉特

Nightingale #Prometheus

《梦华录》要大结局了,看超前点映不如先来学学它!

博文视点Broadview

【直播回顾】战码先锋第七期:三方应用开发者如何为开源做贡献

OpenHarmony开发者

OpenHarmony

龙蜥开发者说:首次触电,原来你是这样的龙蜥社区? | 第 8 期

OpenAnolis小助手

Linux 开源 故事 龙蜥社区 开发者说

一文讲透研发效能!您关心的问题都在 ‍

思码逸研发效能

研发效能

Linux开发_BMP图片编程(翻转、添加水印)

DS小龙哥

6月月更

AS深圳站来了!参与讨论领取官方限量周边!

InfoQ写作社区官方

热门活动 ArchSummit

敏捷之道 | 敏捷开发真的过时了么?

LigaAI

敏捷 敏捷开发 敏捷软件开发 敏捷宣言 LigaAI

事件

Jason199

js 事件 6月月更

「开源摘星计划之操作系统100人」发布,共建操作系统开源人才生态

腾源会

初识云原生安全:云时代的最佳保障

SEAL安全

云原生安全

Prometheus PushGateway 碎碎念

耳东@Erdong

Prometheus PushGateway 6月月更

Vue2/3 自定义组件的 v-model 到底怎么写?💎

德育处主任

JavaScript Vue model Javascript框架 6月月更

保险APP适老化服务评测分析2022第06期

易观分析

保险APP

4个不可不知的“安全左移”的理由

SEAL安全

安全左移 shift left

钛星数安加入龙蜥社区,共同打造网络安全生态

OpenAnolis小助手

开源 龙蜥社区 合作 CLA 钛星数安

flutter系列之:flutter中的offstage

程序那些事

flutter 程序那些事 6月月更

应用升级SpringCloud版本时的注意事项(Dalston升级到Edgware)

程序员欣宸

spring Spring Cloud 6月月更

初中级开发如何有效减少自身的工作量?

百家饭隐私计算平台创业者

开发 书籍推荐

青藤入选工信部网安中心“2021年数字技术融合创新应用典型解决方案”

青藤云安全

网络安全 工信部 主机安全

详解kubernetes备份恢复利器 Velero | 深入了解Carina系列第三期

BoCloud博云

Kubernetes 云原生 数据备份

知识经济时代,教会你做好知识管理

小炮

快手实时数仓保障体系研发实践

Apache Flink

大数据 flink 编程 流计算 实时计算

如何在物联网低代码平台中进行任务管理?

AIRIOT

低代码 物联网

保健品一物一码防窜货营销软件开发

开源直播系统源码

软件开发 app源码

web前端培训怎么修改 node_modules 中的文件

@零度

node.js 前端开发

java技术培训在 MySQL 中使用枚举需要注意什么

@零度

JAVA开发 枚举

歌曲推荐系统实践:Pandas、SciPy和D3.js_语言 & 开发_张天雷_InfoQ精选文章