写点什么

机器学习的 11 个开源项目

  • 2014-12-18
  • 本文字数:1787 字

    阅读完需:约 6 分钟

机器学习是目前数据分析领域的一个热点内容,在平时的学习和生活中经常会用到各种各样的机器学习算法。实际上,基于 Python、Java 等的很多机器学习算法基本都被前人实现过很多次了。这些算法在网上可以找到很多,然而往往存在很多“脏”或者“乱”的开源代码。

在这样的背景下, InfoWorld 近日公布了机器学习领域 11 个最受欢迎的开源项目,这 11 个开源项目大多与垃圾邮件过滤、人脸识别、推荐引擎相关。它们大多数基于现今最流行的语言以及平台,推广以及扩展了机器学习领域的很多重要算法。从中,用户不但可以找到 LDA 等主题模型,也可以找到 HMM 等隐马尔科夫模型。这些模型都是应用领域的热点,也是研究者们最需要的。

  1. Scikit-learn Scikit-learn 是一个非常强大的 Python 机器学习工具包。它通过在现有 Python 的基础上构建了 NumPy 和 Matplotlib,提供了非常便利的数学工具。这个工具包包括了很多简单且高效的工具,很适合用于数据挖掘和数据分析。

在主页中,可以看到 User Guide,这是整个机器学习的索引,其中用户可以学到各种有效的方法。在 Reference 里,用户可以找到各个类具体的用法索引。
2. Shogun Shogun 是一个基于 C++ 的最古老的机器学习开源库,它创建于 1999 年。作为一个 SWIG 库,Shogun 可以轻松地嵌入 Java、Python、C#等主流处理语言中。它的重点在于大尺度上的内核方法,特别是“支持向量机”的学习工具箱。其中,它包括了大量的线性方法,如 LDA、LPM、HMM 等等。
3. Accord Framework/AForge.net Accord 是 AForge.net 的扩展,是一个基于.Net 的机器学习与信号处理框架。它包括了一系列的对图像和音频的机器学习算法,如人脸检测、SIFT 拼接等等。同时,Accord 支持移动对象的实时跟踪等功能。它提供了一个从神经网络到决策树系统的机器学习库。
4. Mahout Mahout 是一个广为人知的开源项目,它是 Apache Software 旗下的一个开源项目,提供了众多的机器学习经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout 内包含了聚类、分类、推荐等很多经典算法,并且提供了很方便的云服务的接口。
5. MLlib MLlib 是 Apache 自己的 Spark 和 Hadoop 机器学习库,它被设计用于大规模高速度地执行 MLlib 所包含的大部分常见机器学习算法。MLlib 是基于 Java 开发的项目,同时可以方便地与 Python 等语言对接。用户可以自己设计针对 MLlib 编写代码,这是很具有个性化的设计。
6. H2O H2O 是 0xdata 的旗舰产品,是一款核心数据分析平台。它的一部分是由 R 语言编写的,另一部分是由 Java 和 Python 语言编写的。用户可以部署 H2O 的 R 程序安装包,之后就可以在 R 语言环境下运行了。H2P 的算法是面向业务欺诈活着趋势预测的,目前正在新一轮的融资中。
7. Cloudera Oryx Oryx 也是由 Hadoop 所设计的机器学习开源项目,由 Cloudera Hadoop Distribution 的创造者所提供。Oryx 能够让机器学习的模型使用在实时的数据流上,如垃圾邮件过滤等。
8. GoLearn GoLearn 是谷歌所构建的 Go 语言的一体化机器学习库,目标是简单并且可定制。Go 语言是谷歌的主打语言,目前使用已经越来越广泛。GoLearn 的简单在于数据在库内被加载和处理,因此能够可定制地扩展数据结构以源码。
9. Weka >Weka 是使用 Java 开发的用户数据挖掘的开源项目。Weka 作为一个公开的数据挖掘工作平台,集合了大量能够承担数据挖掘人物的机器学习算法,包括了对数据进行预处理、分类、回归、聚类等等。同时,Weka 实现了对大数据的可视化,通过 Java 设计的新式交互界面上,实现人与程序的交互。
10. CUDA-Convnet CUDA 是我们众所周知的 GPU 加速套件。而 CUDA-Convnet 是一个基于 GPU 加速的神经网络应用程序机器学习库。它使用 C++ 编写,并且使用了 NVidia 的 CUDA GPU 处理技术。

目前,这个项目已经被重组成为 CUDA-Convnet2,支持多个 GPU 和 Kepler-generation GPUs. Vuples 项目与之类似,使用 F#语言编写,并且适用于.Net 平台上。
11. ConvNetJS ConvNetJS 是一款基于 JavaScript 的在线深度学习库,它提供了在线的深度学习训练方式。它能够帮助深度学习的初学者更快、更加直观的理解算法,通过一些简单的 Demo 给用户最直观的解释。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-12-18 04:1119598
用户头像

发布了 268 篇内容, 共 125.4 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

5G NR Paging 寻呼

柒号华仔

5G 7月月更

企业钟情于混合App开发,小程序容器技术能让效率提升100%

Speedoooo

微信小程序 APP开发 跨端开发 小程序容器

动态注册广播流程源码解析

北洋

Andriod 7月月更

新星计划Day4【数据结构与算法】 稀疏数组与队列

京与旧铺

7月月更

如何现实小老虎拼图游戏

自由

小游戏 7月月更

微服务治理框架对比

穿过生命散发芬芳

微服务框架 7月月更

dotnetcore环境下优雅的执行计划任务

为自己带盐

7月月更

ArrayBlockingQueue源码分析-删除数据

zarmnosaj

7月月更

小程序基础内容组件

小恺

7月月更

OpenHarmony藏头诗应用

坚果

Open HarmonyOS OpenHarmony Open Harmony 7月月更

SpringBoot核心应用第二弹

Java学术趴

7月月更

漏洞挖掘之文件漏洞后利用姿势【网络安全】

网络安全学海

网络安全 安全 信息安全 渗透测试 漏洞挖掘

任务拆分中的「敏捷刺客」,你中招了吗?

LigaAI

团队管理 敏捷开发 需求管理 垂直拆分 需求梳理

Java中的泛型与通配符

未见花闻

7月月更

C 语言入门(三)

逝缘~

7月月更

【刷题记录】7. 整数反转

WangNing

7月月更

2022读过的书 -- 《Essential C++(中文版)》

SkyFire

c++ 读书 入门

【Java】中的String、StringBuffer和StringBuilder的区别

工程师日月

Java’ 7月月更

Javac编译自定义注解及分析Lombok的注解实现

宁在春

注解 Java’ 7月月更

Flutter 构建三维空间动画效果

岛上码农

flutter ios 前端 安卓开发 7月月更

刨析Scoped原理

猪痞恶霸

CSS 7月月更

Java数组最大长度

okokabcd

Java

Envoy与Nginx的八大对比

阿泽🧸

envoy 7月月更

如何优雅的告诉老板软件的研发成本?

涛哥 数字产品和业务架构

企业架构 Archimate

与众不同的破铜烂铁的算法爱好者和牛客的回忆

KEY.L

7月月更

linux之抓包神器tcpdump

入门小站

Linux

一个月后,我们又从 MySQL 双主切换成了主 - 从!

悟空聊架构

MySQL 悟空聊架构 征文活动 7月月更

Spring AOP

武师叔

7月月更

后端实战教程:如何使用 Node.js 开发 RESTful API 接口(Node.js + Express + Sequelize + MySQL)

蒋川

node.js MySQL 后端开发 Express

Python 绘制精美可视化数据分析图表 (二)-pyecharts

迷彩

可视化 7月月更

Flutter、ReactJS+小程序容器技术,降本增效急速提升100%

Speedoooo

flutter react.js 跨端开发 降本增效 小程序容器

机器学习的11个开源项目_语言 & 开发_张天雷_InfoQ精选文章