在 2025 收官前,看清 Data + AI 的真实走向,点击查看 BUILD 大会精华版 了解详情
写点什么

对话机器学习大神 Michael Jordan:解析领域中各类模型

  • 2014-10-09
  • 本文字数:1951 字

    阅读完需:约 6 分钟

乔丹教授(Michael I. Jordan)教授是机器学习领域神经网络的大牛,他对深度学习、神经网络有着很浓厚的兴趣。因此,很多提问的问题中包含了机器学习领域的各类模型,乔丹教授对此一一做了解释和展望。

首先被提到的就是经典的贝叶斯非参数模型。今年暑假,乔丹教授在 Como 开设了贝叶斯非参数模型的课程。这个课程里面,他花了很大一部分时间用来介绍完全随机测度的主题和把它们运用在模型中的好处。有一些提问者参与了这个课程,并且提出了一些问题。总结来说就是三个问题:

  1. 是否有一些其他的或者特殊的抽象数学概念和方法,能够让我们用来从中收益并且整合进机器学习领域?其中一个跨学科例子就是 Hybrid MCMC,原型基于动态系统理论。
  2. 如今大部分贝叶斯非参数都被应用在了聚类/混合模型、主题模型和图模型。非参数应用的下一个前沿方向将在哪里?
  3. 目前机器学习领域的处理问题的方式非常一般,仅仅是套用很多普遍的模型然后进行大量的计算。这个趋势会继续流行下去吗?是否有希望出现一些不需要那么多数据的方法,比如核心集、Matrix Sketching、随机映射或者主动学习?

乔丹教授非常关心这类问题,特别是第一问。实际上他花了职业生涯的大部分时间尝试将各种数学领域已有的想法应用到新的情景中去,并且乔丹的努力很有成效。但是,他所得到的失败远远大于成功。所以乔丹教授很犹豫是否在这里给出一些很具体的建议,因为这很有可能变成傻子的金子而不是真正的建议。

乔丹教授认为完全随机测度(CRMs)仍然是将来的热点。它们大部分被用在了获得归一化的随机测度(见 James, Lijoi and Pruenster 的工作),比如随机概率测度。

把思想从归一化常量中解放出来也值得考虑,CRMs 就是做的这件事。同时,注意到副词“完全”指的是有用的独立属性,暗指那些还未被发明出来的、分而治之的算法。

通常,CRMs 对于非参数就好比指数族对于参数模型的意义,并且乔丹教授现在正在和 Tamara Broderick 与 Ashia Wilson 合作一篇文章,尝试将这个想法带给大家。注意到指数族在几十年前 Larry Brown 的开创性专著发型之后已经无人使用了,但是它们仍然还有很多后续发展,比如乔丹和 Martin Wainwright 的著作,研究了指数族的共轭对耦。

至于非参数应用的下一代前沿方向,乔丹认为这将主要从实际生活中获得实际应用的灵感。在实际生活中,很少一部分人在大规模数据上尝试过贝叶斯非参数模型。一旦实际上开始使用并且取得了一定的成功,这块领域将能够很快发展。

最后,乔丹提到他是核心集、Matrix Sketching、随机映射的忠实粉丝,并且把它们作为基本工具,相信它们仍然会持续发展,因为研究人员已经开始建立更加复杂的、流水线结构。但其实,它们并不是不太需要数据的方法。实际上,它们为整个系统提供了一个可测量的节点让其能够加入更多的数据并且保持准确性。

第二个被提到的是概率图模型。概率图模型(PGMs)是表现联合概率分布结构的一种方式,特别是在条件独立关系和因数分解方面。通过这种方式能够很有效的抓住一些结构的方面,但是仍然有很多其他的联合概率分布的结构是 PGM 不能够派上用场的。没有一个工具在所有领域中都是有用的,每一个工具都有它自己的适用范围。

在另外一个方面,尽管我们有着限制,但在 PGM 方面仍然有着很多需要探索。注意到大部分广泛适用的图模型都是链状的,比如 HMM 模型,CRF 也是。在链之外还有树状的,也有很多工作可以继续。

乔丹教授提到,在 2003 年他介绍 LDA 模型的时候,仍然能够记得 UAI 社区的已经在树领域做了很多年工作的研究员说道:“这个模型只是一个树,这怎么值得去研究的?”但是他仍然被以树为基础的结构的研究的进展所激励着,特别是在三个大领域:有机进化生物领域、文档建模还有自然语言处理。比如乔丹最近和 Alex Bouchard-Cote 一起研究进化树,其节点都是变长的字符串,并且沿着树的边扩展,需要人来推出这棵树和字符串。在主题模型领域,他对于多分辨率的主题树非常感兴趣,这是一个非常有前途的方法,超过了 LDA。John Paisley,Chong Wang,Dave Blei 和乔丹已经推出了一种网状 HDP 结构,在这个结构中,文档不再是一个向量而是一个向量的多路下降树。最近,Percy Liang,Dan Klein 和乔丹正在主攻自然语言语义的一个研究方向,其中基础的模型是一棵树,但是节点可能是已经被赋值了,这样经典约束满足可能解决一些语义的一阶方面的问题。

最后值得详细说明的一件事,没有理由不能让图模型里面的节点来代表随机集,或随机组合结构,或者一般随机过程。在随机向量的经典设置里面,因子分解可能是很有用的。乔丹说道,在这方面还有很多可以值得探索。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-10-09 03:325096
用户头像

发布了 268 篇内容, 共 139.1 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

Kubernetes安装篇(下):基于Kubeadm方式的集群部署

xcbeyond

Kubernetes kubeadm 部署 28天写作 Kubernetes从入门到精通

速看!教育上云 让学习战“疫”两不误

教育云

为您收录的操作系统系列 - 进程管理(中篇)

鲁米

操作系统 进程 同步

短信验证码被刷怎么办?java 短信验证码防刷策略分析

香芋味的猫丶

黑客 短信防刷 短信验证码 短信防轰炸 短信防火墙

RocketMQ-Spring 毕业两周年,为什么能成为 Spring 生态中最受欢迎的 messaging 实现?

阿里巴巴云原生

Docker 容器 微服务 云原生 API

如何快速上手 angular.js

华为云开发者联盟

html Vue 数据 angular js

面试加分项!我在美团Android研发岗工作的那5年,系列篇

欢喜学安卓

android 程序员 面试 移动开发

面试官:请讲一下Redis主从复制的功能及实现原理

华为云开发者联盟

redis 数据 节点 redis哨兵 主从复制

一个合格的初级前端工程师需要掌握的模块笔记

我是哪吒

程序员 面试 Vue 大前端 2月春节不断更

Kafka架构介绍

架构精进之路

kafka 七日更 28天写作 2月春节不断更

统一数据管理工具——CloudQuery v1.3.3 上线!

BinTools图尔兹

数据库 运维 开发工具 dba 数据库管理工具

Elasticsearch Bulk API 奇特的 JSON 格式

escray

七日更 28天写作 死磕Elasticsearch 60天通过Elastic认证考试 2月春节不断更

2021年 区块链最火的app爱打卡

v16629866266

以终为始:28天打卡输出复盘

熊斌

个人成长 写作平台 28天写作

Elasticsearch+Fluentd+Kafka搭建日志系统

远鹏

kafka ELK EFK Fluentd 日志系统

Spring Boot Admin 集成诊断利器 Arthas 实践

阿里巴巴云原生

Java Docker 容器 云原生 Arthas

“新内容 新交互” 阿里云全球视频云创新挑战赛正式开启!

阿里云CloudImagine

阿里云 音视频 应用

区块链终将彻底改变医疗行业,但哪些因素制约当前的采用?

CECBC

区块链

互助系统软件开发,互助app开发

luluhulian

5步教你将MRS数据导入DWS

华为云开发者联盟

数据 MRS GaussDB 集群 DWS

您的《操作系统线程模型总结》请查收。

后台技术汇

28天写作 2月春节不断更

一周信创舆情观察(1.25~1.31)

统小信uos

《iOS面试简历技巧解析》

ios 面试

Spark Shuffle 内部机制(一)

hanke

大数据 spark 开源

区块链+电力,又擦出什么新火花?

CECBC

区块链

GrowingIO SaaS 产品 CI/CD 实践 (一)

GrowingIO技术专栏

ci SaaS CD

淘宝的商品中心和类目体系是怎么设计的

邴越

架构 阿里 模型 电商 业务

程序员成长第三篇:好的代码和好的工程师

石云升

28天写作 2月春节不断更 工程师等级

口碑销量双爆的数据分析丛书再添新成员!

博文视点Broadview

探索语言交互技术在政务数字化的应用

华为云开发者联盟

语音 政务 语言交互 VUI G2c

民进昆明市委:建议利用区块链技术优势在昆明打造金融应用平台

CECBC

金融 金融区块链

对话机器学习大神Michael Jordan:解析领域中各类模型_语言 & 开发_张天雷_InfoQ精选文章