写点什么

使用 Apache Hadoop、Impala 和 MySQL 进行数据分析

  • 2014-05-08
  • 本文字数:2104 字

    阅读完需:约 7 分钟

Apache Hadoop 是目前被大家广泛使用的数据分析平台,它可靠、高效、可伸缩。Percona 公司的 Alexander Rubin 最近发表了一篇博客文章介绍了他是如何将一个表从MySQL 导出到Hadoop 然后将数据加载到 Cloudera Impala 并在这上面运行报告的。

在 Alexander Rubin 的这个测试示例中他使用的集群包含 6 个数据节点。下面是具体的规格:

用途

服务器规格

NameNode、DataNode、Hive 元数据存储等

2x PowerEdge 2950, 2x L5335 CPU @ 2.00GHz, 8 cores, 16GB RAM, 使用 8 个 SAS 驱动器的 RAID 10

仅做数据节点

4x PowerEdge SC1425, 2x Xeon CPU @ 3.00GHz, 2 cores, 8GB RAM, 单个 4TB 驱动器

数据导出

有很多方法可以将数据从 MySQL 导出到 Hadoop。在 Rubin 的这个示例中,他简单地将 ontime 表导出到了一个文本文件中:

select * into outfile ‘/tmp/ontime.psv’
FIELDS TERMINATED BY ‘,’
from ontime;

你可以使用“|”或者任何其他的符号作为分隔符。当然,还可以使用下面这段简单的脚本直接从 www.transtats.bts.gov 上下载数据。

for y in {1988…2013}
do
for i in {1…12}
do
u=“ http://www.transtats.bts.gov/Download/On_Time_On_Time_Performance_${y}_${i}.zip
wget $u -o ontime.log
unzip On_Time_On_Time_Performance_${y}_${i}.zip
done
done

载入 ****Hadoop HDFS

Rubin 首先将数据载入到了 HDFS 中作为一组文件。Hive 或者 Impala 将会使用导入数据的那个目录,连接该目录下的所有文件。在 Rubin 的示例中,他在 HDFS 上创建了 /data/ontime/ 目录,然后将本地所有匹配 On_Time_On_Time_Performance_*.csv 模式的文件复制到了该目录下。

$ hdfs dfs -mkdir /data/ontime/
$ hdfs -v dfs -copyFromLocal On_Time_On_Time_Performance_*.csv /data/ontime/

Impala中创建外部表

当所有数据文件都被载入之后接下来需要创建一个外部表:

CREATE EXTERNAL TABLE ontime_csv (
YearD int ,
Quarter tinyint ,
MonthD tinyint ,
DayofMonth tinyint ,
DayOfWeek tinyint ,
FlightDate string ,
UniqueCarrier string ,
AirlineID int ,
Carrier string ,
TailNum string ,
FlightNum string ,
OriginAirportID int ,
OriginAirportSeqID int ,
OriginCityMarketID int ,
Origin string ,
OriginCityName string ,
OriginState string ,
OriginStateFips string ,
OriginStateName string ,
OriginWac int ,
DestAirportID int ,
DestAirportSeqID int ,
DestCityMarketID int ,
Dest string ,

ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’
STORED AS TEXTFILE
LOCATION ‘/data/ontime’;

注意“EXTERNAL”关键词和 LOCATION,后者指向 HDFS 中的一个目录而不是文件。Impala 仅会创建元信息,不会修改表。创建之后就能立即查询该表,在 Rubin 的这个示例中执行的 SQL 是:

> select yeard, count(*) from ontime_psv group by yeard;

该 SQL 耗时 131.38 秒。注意 GROUP BY 并不会对行进行排序,这一点不同于 MySQL,如果要排序需要添加 ORDER BY yeard 语句。另外通过执行计划我们能够发现 Impala 需要扫描大小约为 45.68GB 的文件。

Impala**** 使用面向列的格式和压缩

Impala 最大的好处就是它支持面向列的格式和压缩。Rubin 尝试了新的使用Snappy 压缩算法的Parquet 格式。因为这个例子使用的表非常大,所以最好使用基于列的格式。为了使用Parquet 格式,首先需要载入数据,这在Impala 中已经有表、HDFS 中已经有文件的情况下是非常容易实现的。本示例大约使用了729 秒的时间导入了约1 亿5 千万条记录,导入之后使用新表再次执行同一个查询所耗费的时间只有4.17 秒,扫描的数据量也小了很多,压缩之后的数据只有3.95GB。

Impala**** 复杂查询示例

select
min(yeard), max(yeard), Carrier, count(*) as cnt,
sum(if(ArrDelayMinutes>30, 1, 0)) as flights_delayed,
round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2) as rate
FROM ontime_parquet_snappy
WHERE
DayOfWeek not in (6,7) and OriginState not in (‘AK’, ‘HI’, ‘PR’, ‘VI’)
and DestState not in (‘AK’, ‘HI’, ‘PR’, ‘VI’)
and flightdate < ‘2010-01-01’
GROUP by carrier
HAVING cnt > 100000 and max(yeard) > 1990
ORDER by rate DESC
LIMIT 1000;

注意:以上查询不支持 sum(ArrDelayMinutes>30) 语法,需要使用 sum(if(ArrDelayMinutes>30, 1, 0) 代替。另外查询故意被设计为不使用索引:大部分条件仅会过滤掉不到 30% 的数据。

该查询耗时 15.28 秒比最初的 MySQL 结果(非并行执行时 15 分 56.40 秒,并行执行时 5 分 47 秒)要快很多。当然,它们之间并不是一个“对等的比较”:

  • MySQL 将扫描 45GB 的数据而使用 Parquet 的 Impala 仅会扫描 3.5GB 的数据
  • MySQL 运行在一台服务器上,而 Hadoop 和 Impala 则并行运行在 6 台服务器上

尽管如此,Hadoop 和 Impala 在性能方面的表现依然令人印象深刻,同时还能够支持扩展,因此在大数据分析场景中它能为我们提供很多帮助。


感谢崔康对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-05-08 08:367633
用户头像

发布了 321 篇内容, 共 121.1 次阅读, 收获喜欢 19 次。

关注

评论

发布
暂无评论
发现更多内容

从代理机制到Spring AOP,这篇给你安排得明明白白的

做梦都在改BUG

Java spring aop 代理机制

首届玄铁 RISC-V 生态大会上海举办 龙蜥操作系统持续深度参与标准共建

OpenAnolis小助手

芯片 risc-v 龙蜥操作系统 平头哥 生态大会

通过Chaos-Mesh打造更稳定TiDB数据库高可用架构(一)

TiDB 社区干货传送门

实践案例 集群管理 管理与运维 扩/缩容 数据库架构设计

TiDB 的事务和一致性校验工具 BANK

TiDB 社区干货传送门

实践案例 故障排查/诊断 数据库架构选型

详解命令模式本质及其在高复杂调用中的实践案例

阿里技术

设计模式 命令模式

关于加解密、加签验签的那些事 | 得物技术

得物技术

java

CI/CD | 不可忽略的Jenkins基础架构修复问题

龙智—DevSecOps解决方案

ci cicd jenkins CI/CD CloudBees

思码逸任晶磊:ChatGPT 时代的软件研发数据与效能提升

思码逸研发效能

机器学习 研发效能 ChatGPT

通过TiDB Operator为已有TiDB集群部署异构集群

TiDB 社区干货传送门

集群管理 管理与运维 故障排查/诊断 安装 & 部署 扩/缩容

物理机安装 TiKV 时 RAID 卡在线配置方式

TiDB 社区干货传送门

实践案例 集群管理 安装 & 部署

DTO、VO、BO、PO、DO的用法区别,居然这么多人搞不清楚.....

程序知音

手把手教你改 sysbench 代码

TiDB 社区干货传送门

开发语言 管理与运维

Region is unavailable的排查总结

TiDB 社区干货传送门

管理与运维 故障排查/诊断 扩/缩容

Stable Diffusion原理详解

jarodyv

人工智能 机器学习 计算机视觉 Stable Diffusion 生成式AI

Atlassian Server用户新选择 | 云版和本地部署的数据中心版,总有一个适合您

龙智—DevSecOps解决方案

迁移 Server Atlassian

DBT 收购 Transform,指标平台已成现代数据栈关键拼图

Kyligence

数据分析 指标管理

你没有必要完全辞去工作

宇宙之一粟

创业 个人成长 思维方式 工作 打工人

云图说丨Astro Canvas一站式数据可视化开发,分钟级构建业务大屏

华为云开发者联盟

云计算 后端 华为云 华为云开发者联盟 企业号 3 月 PK 榜

课程作业及比赛任务,已支持 Notebook 内直接提交|ModelWhale 版本更新

ModelWhale

人工智能 机器学习 数据分析 canvas 模型管理

AI+人类,实现高效网络安全

HummerCloud

人工智能 网络安全

研讨会回顾 | Perforce发布数字资产管理工具Helix DAM,帮助您按时按预算交付虚拟产品

龙智—DevSecOps解决方案

版本控制 数字资产 游戏开发 数字资产管理 芯片研发

通过Chaos-Mesh打造更稳定TiDB数据库高可用架构(二)

TiDB 社区干货传送门

实践案例 集群管理 管理与运维 故障排查/诊断 安装 & 部署

代码质量与安全 | SAST与DAST有什么区别?

龙智—DevSecOps解决方案

klocwork SAST DAST 静态应用程序安全测试 动态应用程序安全测试

Oracle ASM磁盘组配置、日常运维、故障处理等操作资料汇总

墨天轮

数据库 oracle asm 磁盘管理

基于Mindspore2.0的GPT2预训练模型迁移教程

华为云开发者联盟

人工智能 华为云 华为云开发者联盟 企业号 3 月 PK 榜

柏拉图会反对ChatGPT吗?~深度好文| 社区征文

李韧

人工智能 ChatGPT

数据标注工具,多维度体验优化|ModelWhale 版本更新

ModelWhale

人工智能 标注 标注工具 团队协同 模型管理

FL Studio21最新版DAW数字音频工作站

茶色酒

FL Studio FL Studio 21

MQTT 5.0连接属性

EMQ映云科技

物联网 IoT mqtt 企业号 3 月 PK 榜 连接属性

GitHub上线重量级分布式事务笔记,再也不怕面试官问分布式了

小小怪下士

Java 程序员 分布式 分布式事务 后端

从“13天”到“0天”延时,揭秘火山引擎DataLeap SLA保障最佳实践

字节跳动数据平台

大数据 数据治理 数据研发 企业号 3 月 PK 榜

使用Apache Hadoop、Impala和MySQL进行数据分析_数据库_孙镜涛_InfoQ精选文章