AI实践哪家强?来 AICon, 解锁技术前沿,探寻产业新机! 了解详情
写点什么

浅入浅出智能合约 - 部署(二)

  • 2019-12-05
  • 本文字数:3642 字

    阅读完需:约 12 分钟

浅入浅出智能合约 - 部署(二)


上一篇文章 浅入浅出智能合约 - 概述(一) 介绍了智能合约中的一些基本概念以及面向合约的编程语言 Solidity,在这篇文章中我们将要介绍智能合约在编写之后是如何部署到 Ethereum 网络的。



部署一个新的智能合约或者说 DApp 其实总共只需要两个步骤,首先要将已经编写好的合约代码编译成二进制代码,然后将二进制数据和构造参数打包成交易发送到网络中,等待当前交易被矿工追加到区块链就可以了。

编译

合约代码的编译过程非常简单,我们使用如下的合约代码为例,简单介绍合约的编译过程:


JavaScript


pragma solidity ^0.4.22;
contract Contract { constructor() public { }}
复制代码


编译 Solidity 代码需要 solidity 编译器参与工作,编译器的使用也非常简单,我们可以直接使用如下的命令将上述合约编译成二进制:


Bash


$ solc --bin contract.sol
======= contract.sol:Contract =======Binary:6080604052348015600f57600080fd5b50603580601d6000396000f3006080604052600080fd00a165627a7a72305820d9b24bc33db482b29de2352889cc2dfeb66029c28b0daf251aad5a5c4788774a0029
复制代码


如果我们使用了 Ethereum Wallet 等客户端,就可以将上述二进制数据添加到如下图所示的 DATA 中:



用于创建合约的交易不需要填写目标地址需要在 DATA 中填写合约的二进制数据和编码后的构造器二进制参数,由于这个合约的构造器并不包含任何参数,所以我们只需要添加合约的二进制数据,点击发送后会生成如下的交易 e74c796a041bad60469f2ee023c87e08


JavaScript


{    "jsonrpc": "2.0",    "id": 1,    "result": {        "blockHash": "0xfb508342b89066fe2efa45d7dbb9a3ae241486eee66103c03049e2228a159ee8",        "blockNumber": "0x208c0a",        "from": "0xe118559d65f87aaa8caa4383b112ff679a21223a",        "gas": "0x2935a",        "gasPrice": "0x9502f9000",        "hash": "0xe74c796a041bad60469f2ee023c87e087847a6603b27972839d0c0de2e852315",        "input": "0x6080604052348015600f57600080fd5b50603580601d6000396000f3006080604052600080fd00a165627a7a72305820d9b24bc33db482b29de2352889cc2dfeb66029c28b0daf251aad5a5c4788774a0029",        "nonce": "0x2",        "to": null,        "transactionIndex": "0x5",        "value": "0x0",        "v": "0x2c",        "r": "0xa5516d78a7d486d111f818b6b16eef19989ccf46f44981ed119f12d5578022db",        "s": "0x7125e271468e256c1577b1d7a40d26e2841ff6f0ebcc4da073610ab8d76c19d5"    }}
复制代码


在这个用于创建合约的特殊交易中,我们可以看到目标地址 to 的值为空,input 的值就是我们在 Ethereum Wallet 中发送交易时填写的 DATA,即合约的二进制代码。这笔交易被纳入区块链之后,我们就能在 Etherscan 上看到这笔交易成功的创建了一个合约 0xa6a158a131476d4e071f4a3a0d9af2d88769b25a

发送

从上面的测试已经可以看到合约都是由交易(Transaction)创建的,每一个创建合约的交易的 to 字段都是 null,而 input 是合约代码编译之后的二进制;经历了编译这一过程,剩下的就是交易的打包、签名和发送了。


在这里,我们可以通过阅读一个经典的 Ethereum 实现 parity 的源代码来研究交易是如何打包、签名和发送的;从源代码中,我们可以找到签名交易的入口 sign_transaction 函数:


Rust


// parity/rpc/src/v1/traits/eth_signing.rs#[rpc(meta, name = "eth_signTransaction")]fn sign_transaction(&self, Self::Metadata, TransactionRequest) -> BoxFuture<RichRawTransaction>;
// parity/rpc/src/v1/impls/signing.rsfn sign_transaction(&self, meta: Metadata, request: RpcTransactionRequest) -> BoxFuture<RpcRichRawTransaction> { let res = self.dispatch( RpcConfirmationPayload::SignTransaction(request), meta.dapp_id().into(), meta.origin, );
Box::new(res.flatten().and_then(move |response| { match response { RpcConfirmationResponse::SignTransaction(tx) => Ok(tx), e => Err(errors::internal("Unexpected result.", e)), } }))}
复制代码


上述函数初始化了一个 RpcConfirmationPayload::SignTransaction 结构体并在最后调用 fill_optional_fields 将请求中的参数 fromtononcegas_pricegasvaluedata 以及 condition 等数据填入到最终被签名的交易中:


Rust


// rpc/src/v1/helpers/dispatch.rsfn fill_optional_fields(&self, request: TransactionRequest, default_sender: Address, force_nonce: bool)                        -> BoxFuture<FilledTransactionRequest>{  let request = request;  let from = request.from.unwrap_or(default_sender);  let nonce = if force_nonce {    request.nonce.or_else(|| Some(self.state_nonce(&from)))  } else {    request.nonce  };
Box::new(future::ok(FilledTransactionRequest { from, used_default_from: request.from.is_none(), to: request.to, nonce, gas_price: request.gas_price.unwrap_or_else(|| { default_gas_price(&*self.client, &*self.miner, self.gas_price_percentile) }), gas: request.gas.unwrap_or_else(|| self.miner.sensible_gas_limit()), value: request.value.unwrap_or_else(|| 0.into()), data: request.data.unwrap_or_else(Vec::new), condition: request.condition, }))}
复制代码


经过内部的两次 RPC 请求 SignTransactionSignMessage 最后会由 signature.rs 文件中的 sign 函数使用 secp256k1 完成对传入数据的签名:


Rust


// ethkey/src/signature.rspub fn sign(secret: &Secret, message: &Message) -> Result<Signature, Error> {  let context = &SECP256K1;  let sec = SecretKey::from_slice(context, &secret)?;  let s = context.sign_recoverable(&SecpMessage::from_slice(&message[..])?, &sec)?;  let (rec_id, data) = s.serialize_compact(context);  let mut data_arr = [0; 65];
// no need to check if s is low, it always is data_arr[0..64].copy_from_slice(&data[0..64]); data_arr[64] = rec_id.to_i32() as u8; Ok(Signature(data_arr))}
复制代码


eth_signTransaction 的作用其实只有两部分,一部分是将传入的参数组合成一个交易,另一部分是通过 secp256k1 对交易进行签名:



签名好的二进制交易可以通过 eth_sendRawTransaction 广播到整个 Ethereum 网络,而 JSON 格式的交易可以通过 eth_sendTransaction 发送:


Rust


// parity/rpc/src/v1/traits/eth.rs#[rpc(name = "eth_sendRawTransaction")]fn send_raw_transaction(&self, Bytes) -> Result<H256>;
// parity/rpc/src/v1/impls/eth.rsfn send_raw_transaction(&self, raw: Bytes) -> Result<RpcH256> { Rlp::new(&raw.into_vec()).as_val() .map_err(errors::rlp) .and_then(|tx| SignedTransaction::new(tx).map_err(errors::transaction)) .and_then(|signed_transaction| { FullDispatcher::dispatch_transaction( &*self.client, &*self.miner, signed_transaction.into(), ) }) .map(Into::into)}
复制代码


send_raw_transaction 最终会将签名好的交易加入到当前节点的交易队列等待处理,交易队列中的交易随后会广播到整个网络中并被整个网络确认并纳入新的区块中。


Rust


fn import_own_transaction<C: miner::BlockChainClient>(  &self,  chain: &C,  pending: PendingTransaction,) -> Result<(), transaction::Error> {  let client = self.pool_client(chain);  let imported = self.transaction_queue.import(    client,    vec![pool::verifier::Transaction::Local(pending)]  ).pop().expect("one result returned per added transaction; one added => one result; qed");
if imported.is_ok() && self.options.reseal_on_own_tx && self.sealing.lock().reseal_allowed() { if self.engine.seals_internally().unwrap_or(false) || !self.prepare_pending_block(chain) { self.update_sealing(chain); } }
imported}
复制代码


当交易成为新区块的一部分之后,我们就能通过 Etherscan 或者其他方式查看被创建合约 0xa6a158a131476d4e071f4a3a0d9af2d88769b25a 的信息了。

总结

在 Ethereum 上部署合约的过程其实与交易发送的过程基本完全相似,唯一的区别就是用于创建合约的交易目前地址为空,并且 data 字段中的内容就是合约的二进制代码,也就是合约的部署由两部分组成:编译合约和发送消息。对于合约的部署这里差不多介绍完了,在下一篇文章中,我们将分析如何调用智能合约中声明的函数。


本文转载自 Draveness 技术博客。


原文链接:https://draveness.me/smart-contract-deploy


2019-12-05 18:171032

评论

发布
暂无评论
发现更多内容

一期二班-吴水金-第六课作业

吴水金

Alibaba官方发文:阿里技术人的成长路径与方法论

Java架构师迁哥

802.11抓包软件对比之Microsoft Network Monitor

IoT云工坊

wifi 嵌入式 抓包

「干货总结」程序员必知必会的十大排序算法

bigsai

排序 排序算法 快速排序

熬夜不睡觉整理ELK技术文档,从此摆脱靠百度的工作(附源码)

996小迁

Java 编程 架构 面试 ELK

肝了一周的 UDP 基础知识终于出来了。

苹果看辽宁体育

计算机网络 计算机基础

表格控件Spread.NET V14.0 发布:支持 .NET 5 和 .NET Core 3.1

葡萄城技术团队

推荐几款MySQL相关工具

Simon

MySQL 工具 percona server

架构师训练营 - 第五周学习总结

joshuamai

《华为数据之道》读书笔记:第 4 章 面向“业务交易”的信息架构建设

方志

数据中台 数字化转型 数据治理

开源认证和访问控制的利器keycloak使用简介

程序那些事

开源 程序那些事 授权框架 keycloak 认证授权

Thread.start() ,它是怎么让线程启动的呢?

小傅哥

Java 线程 JVM 小傅哥 Thread

JVM-技术专题-垃圾回收策略

码界西柚

家庭留白、中屏崛起与硬件棋局

脑极体

架构师训练营 W06 作业

Geek_f06ede

Java踩坑记系列之BigDecimal

Java老k

BigDecimal

Java踩坑记系列之Arrays.AsList

Java老k

Java

面试者必看:Java8中的默认方法

Silently9527

java8 默认方法

关于 AWS Lambda 中的冷启动,你想了解的信息都在这!

donghui

Serverless Faas 函数计算

成德眉资现代农业园区大联动促发展,“1链3e”引领四市农业产业数字化建设

CNG农业公链

为什么说应用架构需要分类思维?

Java架构师迁哥

java: Compilation failed: internal java compiler error解决办法

LSJ

IDEA

讯飞推出充电宝式便携拾音器,重新定义传统拾音

Talk A.I.

大厂经验:一套Web自动曝光埋点技术方案

阿亮

埋点 曝光埋点 点击埋点 自动化埋点

“奋斗者”号下潜10909米:我们为什么要做深海探索?

脑极体

Architecture Phase1 Week10:Summarize

phylony-lu

极客大学架构师训练营

甲方日常 57

句子

工作 随笔杂谈 日常

京东千亿订单背后的纵深安全防御体系

京东科技开发者

安全 网络 云服务 云安全

SpringBoot-技术专题-如何提高吞吐量

码界西柚

计算机核心课程必读书目——《高级数据结构:理论与应用》

计算机与AI

数据结构 算法

架构师训练营 - 第五周课后练习

joshuamai

浅入浅出智能合约 - 部署(二)_语言 & 开发_Draveness_InfoQ精选文章