写点什么

干货丨数据库分库分表基础和实践

  • 2019-10-21
  • 本文字数:3609 字

    阅读完需:约 12 分钟

干货丨数据库分库分表基础和实践

数据库架构的演变

在业务数据量比较少的时代,我们使用单机数据库就能满足业务使用,随着业务请求量越来越多,数据库中的数据量快速增加,这时单机数据库已经不能满足业务的性能要求,数据库主从复制架构随之应运而生。


主从复制是将数据库写操作和读操作进行分离,使用多个只读实例(slaver replication)负责处理读请求,主实例(master)负责处理写请求,只读实例通过复制主实例的数据来保持与主实例的数据一致性。由于只读实例可以水平扩展,所以更多的读请求不成问题,随着云计算、大数据时代的到来,事情并没有完美的得以解决,当写请求越来越多,主实例的写请求变成主要的性能瓶颈。


如何解决上述问题?如果仅仅通过增加一个主实例来分担写请求,写操作如何在两个主实例之间同步来保证数据一致性,如何避免双写,问题会变的更加复杂。这时就需要用到分库分表(sharding),对写操作进行切分来解决,如图 1 所示:



图 1:典型的读写分离和分库分表


华为云中间件产品 DDM(Distributed Database Middleware)作为 RDS 的前置分布式数据库访问服务,彻底解决了数据库的扩展性问题,对应用透明地实现海量数据的高并发访问,实现了读写分离和分库分表。

数据分片的实现方案

数据分片的实现方案可分为应用层分片和中间件分片,这两种实现方案的特点如图 2 所示:



图 2:应用层分片和中间件分片


DDM 作为一款优秀的分布式数据库中间件产品,实现了读写分离和数据分片功能,使用 DDM 来分库分表,应用 0 改动,对应用完全透明。

分库分表的切分方式

数据的切分(Sharding)根据其切分规则的类型,可以分为两种切分模式。一种是按照不同的表(或者 Schema)来切分到不同的数据库(主机)之上,这种切分方式可以称之为数据的垂直(纵向)切分;另外一种则是根据表中的数据的逻辑关系,将同一个表中的数据按照某种条件拆分到多台数据库(主机)上面,这种切分称之为数据的水平(横向)切分。


垂直切分最大特点就是规则简单,实施也更为方便,尤其适合各业务之间的耦合度非常低,相互影响很小,业务逻辑非常清晰的系统。在这种系统中,可以很容易做到将不同业务模块所使用的表分拆到不同的数据库中。根据不同的表来进行拆分,对应用程序的影响也更小,拆分规则也会比较简单清晰。


水平切分于垂直切分相比,相对来说稍微复杂一些。因为要将同一个表中的不同数据拆分到不同的数据库中,对于应用程序来说,拆分规则本身比根据表名来拆分更为复杂,后期的数据维护也会更为复杂一些。


具体而言,如果单个库太大,这时我们要看是因为表多而导致数据多,还是因为单张表里面的数据多。如果是因为表多而数据多,使用垂直切分,根据业务切分成不同的库。如果是因为单张表的数据量太大,这时要用水平切分,即把表的数据按某种规则切分成多张表,甚至多个库上的多张表。分库分表的顺序应该是先垂直分,后水平分。因为垂直分更简单,更符合我们处理现实世界问题的方式。

水平切分

相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分到一个数据库,而另外的某些行又切分到其他的数据库中,如图 3:



图 3:水平切分


水平切分的优点


1、拆分规则抽象好,join 操作基本可以数据库做。


2、不存在单库大数据,高并发的性能瓶颈。


3、应用端改造较少。


4、 提高了系统的稳定性跟负载能力。


水平切分的缺点


1、拆分规则难以抽象。


2、分片事务一致性难以解决。


3、数据多次扩展难度跟维护量极大。


4、跨库 join 性能较差。


水平切分的典型分片规则


1、HASH 取模


例如:取用户 id,然后 hash 取模,分配到不同的数据库上。


2、RANGE


例如:从 0 到 10000 一个表,10001 到 20000 一个表。


3、时间


按照时间切分,例如:将 6 个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据被查询的概率变小,所以没必要和”热数据“放在一起,这个也是“冷热数据分离”。


切分原则一般是根据业务找到适合的切分规则分散到不同的库,如图 4,根据用户 ID 取模作为切分规则。



图 4:根据 userid 取模进行切分

垂直切分

一个数据库由很多表的构成,每个表对应着不同的业务,垂直切分是指按照业务将表进行分类,分布到不同的数据库上面,这样也就将数据或者说压力分担到不同的库上面,如图 5:



图 5:垂直切分


垂直切分的优点


1、数据维护简单。


2、拆分后业务清晰,拆分规则明确。


3、系统之间整合或扩展容易。


垂直切分的缺点


1、事务处理复杂。


2、部分业务表无法 join,只能通过接口方式解决,提高了系统复杂度。


3、受每种业务不同的限制存在单库性能瓶颈,不易数据扩展跟性能提高。


由于垂直切分是按照业务的分类将表分散到不同的库,所以有些业务表会过于庞大,存在单库读写与存储瓶颈,所以就需要水平拆分来做解决。

切分原则

由于数据切分后数据 Join 的难度,在此也分享一下数据切分的经验:


第一原则:能不切分尽量不要切分。


第二原则:如果要切分一定要选择合适的切分规则,提前规划好。


第三原则:数据切分尽量通过数据冗余或表分组(Table Group)来降低跨库 Join 的可能。


第四原则:由于数据库中间件对数据 Join 实现的优劣难以把握,而且实现高性能难度极大,业务读取尽量少使用多表 Join。

分库分表后的问题和应对策略

分库分表主要用于应对当前互联网常见的两个场景:海量数据和高并发。然而,分库分表是一把双刃剑,虽然很好的应对海量数据和高并发对数据库的冲击和压力,但也提高了系统的复杂度和维护成本,带来一些问题。


1、事务支持


在分库分表后,就成为分布式事务了,如何保证数据的一致性成为一个必须面对的问题。一般情况下,使存储数据尽可能达到用户一致,保证系统经过一段较短的时间的自我恢复和修正,数据最终达到一致。


2、分页与排序问题


一般情况下,列表分页时需要按照指定字段进行排序。在单库单表的情况下,分页和排序也是非常容易的。但是,随着分库与分表的演变,也会遇到跨库排序和跨表排序问题。为了最终结果的准确性,需要在不同的分表中将数据进行排序并返回,并将不同分表返回的结果集进行汇总和再次排序,最后再返回给用户。


3、表关联问题


在单库单表的情况下,联合查询是非常容易的。但是,随着分库与分表的演变,联合查询就遇到跨库关联的问题。粗略的解决方法:ER 分片:子表的记录与所关联的父表记录存放在同一个数据分片上。全局表:基础数据,所有库都拷贝一份。字段冗余:这样有些字段就不用 join 去查询了。ShareJoin:是一个简单的跨分片 join,目前支持 2 个表的 join,原理就是解析 SQL 语句,拆分成单表的 SQL 语句执行,然后把各个节点的数据汇集。


4、分布式全局唯一 ID


在单库单表的情况下,直接使用数据库自增特性来生成主键 ID,这样确实比较简单。在分库分表的环境中,数据分布在不同的分表上,不能再借助数据库自增长特性,需要使用全局唯一 ID。

分库分表案例

某税务核心征管系统,全国 34 个省国/地税,电子税务局 15 省格局。


技术路径:核心征管 + 纳税服务 业务应用分布式上云改造。

业务挑战

1、数据查询时间 3-5 秒,响应速度慢严重影响体验


当前业务逻辑大量放在数据库层,一个办税业务的事务边界过大(40 条 SQL 语句),涉及以“申报”、“发票”大表为主的多张表关联事务操作,导致业务查询响应速度慢。


2、亿级数据快速的增长,挑战业务性能瓶颈


省级税务局,办税高峰期承载百万级用户并发量,3000-5000TPS。现网分析得到数据:核心征管库近 1000 张表,其中“申报”、“发票”业务表数据量大、增长快,是主要瓶颈表;发票综合信息:每省 10 亿级条记录,每年千万到亿条记录级别增量;申报信息表:亿级记录数据量。

解决方案

1、垂直分库、微服务分解数据库压力,降低单业务 sql 数


基于微服务将大事务拆解为异步小事务,业务逻辑从数据库层面剥离。拆分主库数据,将大表垂直拆分到多个数据库中,一个业务 40 条 SQL 缩减到 20 条 SQL,达到分解数据库压力的目的。


2、数据分片支撑海量数据增长,线性提升业务处理速度


单表亿级记录以纳税人作为拆分键,拆分到 RDS-MySQL 的 128 个分片上。实现支撑海量数据的存储。拆分后数据库设计简洁、简单,数据库的表之间不设外键,不写触发器,不写存储过程,实现数据库记录的水平扩展。


3、读写分离提升查询性能


DDM 自动实现读写分离,透明地完成写操作和读操作的分发,应用程序无需做特殊的改动和处理逻辑。写操作分发到 RDS 主实例,读操作自动分发到 RDS 的多个读实例上,这样写操作不会影响读操作的并发,读并发业务增长时只需要按需增加只读实例即可。

企业受益

1、使用了 DDM 之后,轻松突破原来的性能瓶颈,一次业务操作,原来需要 3 到 5 秒,现在只需要 1 秒。


2、读写操作通过 DDM 的自动读写分离,在不改动业务情况下,轻松提升了整体的读写并发能力。


本文转载自公众号中间件小哥(ID:huawei_kevin)。


原文链接:


https://mp.weixin.qq.com/s/zG90mtqhDkHOuM-Z41Utpg


2019-10-21 16:023922

评论 1 条评论

发布
用户头像
总结的很不错
2021-06-18 22:24
回复
没有更多了
发现更多内容

Django REST项目实战:在线中文字符识别

TiAmo

django RESTful 三周年连更

2023 年 10 个最佳 Linux 桌面发行版,每个都是那么的漂亮!

wljslmz

三周年连更

全面解析|搞懂Nginx这一篇就够了

浅羽技术

Java nginx 反向代理 服务器 三周年连更

手撕代码系列(二)

Immerse

JavaScript 前端 ES6 ES6-ES12 JavaScript4

MySql中执行计划如何来的——Optimizer Trace | 京东云技术团队

京东科技开发者

MySQL 数据库 企业号 4 月 PK 榜 Optimizer Trace

MD5 到底算不算一种加密算法?

架构精进之路

算法 后端 加密 md5 三周年连更

阿里云DTS数据同步实施

乌龟哥哥

三周年连更

OpenHarmony设备开发常用接口

鸿蒙之旅

OpenHarmony 终端设备开发 三周年连更

零代码以“王者荣耀”为例解析设计七原则,助你面试拿“五杀”

陈言必行

设计原则 三周年连更

【图解网络协议】面试官:三次握手都不会,回去等通知吧

袁袁袁袁满

三周年连更

火山引擎分布式云原生平台,帮助企业用好分布式云

科技热闻

华为云智能云接入ICA,让世界距离更近

YG科技

华为云云速建站,助力企业搭建网站省心又省力

YG科技

Prometheus实战-从0构建高可用监控平台(二)

小毛驴的烂笔头

Linux Prometheus

Qz学算法-数据结构篇(查找算法--插值、斐波那契查找)

浅辄

数据结构 三周年连更

OneNet服务器LWM2M物联网协议(智能井盖方案)

DS小龙哥

三周年连更

系统认知篇:防腐层、门面模式及适配模式的本质 | 京东云技术团队

京东科技开发者

软件架构 门面效应 适配器模式 企业号 4 月 PK 榜 防腐层

从原理聊JVM(三):详解现代垃圾回收器Shenandoah和ZGC

京东科技开发者

G1 ZGC JVM 企业号 4 月 PK 榜 Shenandoah

AREX 流量回放实践分享

AREX 中文社区

自动化测试 回归测试 流量回放

IDEA用上这十大插件绝对舒服

越长大越悲伤

IDEA idea插件

华为云医疗智能体,助力医疗健康加速智能化

YG科技

响应系统设置的事件

芯动大师

Configuration 响应系统 三周年连更

如何将 Java 文件转换为 InputStream?这两种方法很管用!

wljslmz

三周年连更

Java 继承 Minio 实现文件上传、文件下载、文件删除等功能

Java架构历程

三周年连更

【云原生】Docker之创建并进入mysql容器

A-刘晨阳

MySQL Docker Linux 三周年连更

跨平台应用开发进阶(五十七):uni-app 通过 overrideUrlLoading 实现拦截 webview 窗口的 URL 跳转请求

No Silver Bullet

uni-app 跨平台应用开发 三周年连更 webview 窗口 URL 跳转请求拦截

Matlab实现PSO算法

Shine

三周年连更

重磅|阿里云无影云电脑“魔方AS05”正式上市

云布道师

无影云电脑

美国To B软件公司受到ChatGPT“威胁”解析

B Impact

OpenHarmony接收指定网络的状态变化通知

坚果

OpenHarmony 三周年连更

离散信源 R(D)计算及限失真信源编码定理

timerring

信息 信息论

干货丨数据库分库分表基础和实践_文化 & 方法_张伟_InfoQ精选文章