写点什么

对抗铺天盖地的假新闻,MIT 开发 AI 检测系统自动识别虚假消息

  • 2019-10-22
  • 本文字数:1949 字

    阅读完需:约 6 分钟

对抗铺天盖地的假新闻,MIT开发AI检测系统自动识别虚假消息


互联网时代,假新闻铺天盖地,而且极具迷惑性,Facebook 一度深陷虚假新闻的泥淖,不但被控影响了美国总统大选结果,甚至引发了德国政府的巨额罚款。我们不禁想到,能否利用人工智能强大的能力,来对抗假新闻呢?麻省理工学院计算机科学与人工智能实验室就为此做出了尝试。


假新闻是一种威胁,假新闻的大致定义为,通过传统媒体或社交媒体故意散布虚假信息的一种宣传。皮尤研究中心(Pew Research Center)在 2016 年 12 月的一项调查显示,有 23% 的美国成年人有意无意地与朋友和其他人分享过假新闻。研究显示,假新闻已经开始削弱公众对主要电视和报纸媒体的信任。Monmouth University 的一项调查显示,77% 的受访者称,他们认为媒体报道的全都是假新闻。在一个特别令人震惊的例子中,关于华盛顿特区一家披萨店的一则不真实的报道(但像病毒一样广为传播),导致在一项 1244 人参与的民意调查中,有 9% 的美国选民表示,他们认为前国务卿 Hillary Clinton 与一个儿童色情团伙有牵连。


为了引起人们对这一问题的关注,最近,麻省理工学院计算机科学与人工智能实验室(Computer Science and Artificial Intelligence Laboratory,CSAIL)的研究人员调查了所谓的假新闻探测器被真实文章愚弄的方式。与这项工作同时进行的是,同一个团队还使用了世界上最大的事实核查数据集之一来开发能够检测虚假陈述的自动化系统。


它是建立在麻省理工学院计算机科学与人工智能实验室去年进行的一项研究的基础上,该研究开发了一种人工智能系统,可以判断消息来源是准确的,还是带有政治偏见的。


研究人员的两篇预印论文中的第一篇《我们安全了吗?假新闻检测中分布特征的局限性》(Are We Safe Yet? The Limitations of Distributional Features for Fake News Detection),描述了基于 OpenAI 的 GPT-2 的框架,这是一种人工智能模型,他们在将人工书写的文本提供给假新闻探测器之前,先用人工智能模型“破坏”这个文本的含义。在一次实验中,他们利用类似于可靠来源的自动完成工具来生成有关合法新闻的信息。生成器(Generator)提供了一个有关 NASA 如何收集日冕物质抛射数据的报道,并就这些数据如何帮助科学家研究地球磁场发表了翔实且正确的解释。尽管如此,它还是被识别为“假新闻”,这表明,如果假新闻探测器是机器生成的,它就无法区分真假文本。


该研究的贡献者、麻省理工学院教授 Regina Barzilay 表示:“我们的这一发现对当前分类器的可信度提出了质疑,这些分类器被用来帮助检测其他新闻来源中的错误信息方面。”


在第二篇论文《经过去偏的事实核查模型的探讨》(Towards Debiasing Fact Verification Models)中,该团队获取了事实提取和验证(Fact Extraction and VERification,FEVER),这是一个虚假陈诉的存储库,与 Wikipedia 的文章中的证据进行交叉核查,以开发出一种同类最佳的事实检查算法。


问题在于,接受过 FEVER 训练的系统往往侧重于陈述的语言,而不考虑外部证据。(例如,像“Adam Lambert does not publicly hide his homosexuality”(亚当·兰伯特并没有公开隐藏自己的同性恋身份)这样的陈述,即使是真正的事实,并且可以从语料库中推断出来,它也有可能被事实核查人工智能判定为假新闻。当目标语句包含的信息在今天是正确的,但在将来却有可能被认为是错误的信息,这种影响会加剧。


为解决这一问题,合著者创建了一个数据集来消除 FEVER 的偏见,但此举并没有完全解决这一难题。模型在无偏评估集上表现不佳,研究人员将这一结果归因于这些模型过度依赖于它们最初接触到的偏见。最终的解决方案是设计一种全新的算法:当在经过去偏的数据集上进行训练时,该算法在所有指标上的表现都优于之前的事实核查 AI。


该团队希望将事实核查和现有防御相结合,使模型对抵御攻击的能力更加健壮。未来,他们希望能够通过开发新的算法和构建涵盖更多类型错误信息的数据集来进一步改进现有模型。


他们并不是唯一试图与人工智能对抗假新闻转播的人。总部位于印度德里的初创公司 MetaFact 利用自然语言处理算法来标记新闻报道和社交媒体帖子中的错误信息和偏见。AdVerif.ai 是一个软件即服务的平台,去年发布了测试版,它用于分析错误信息、裸体、恶意软件和其他有问题的内容,并交叉引用一个定期更新的数据库,其中包含数以千计的虚假和合法的新闻条目。就 Facebook 而言,它已经尝试部署人工智能工具来“识别账户和假新闻”。


无论最终的解决方案是人工智能、人类管理还是两者兼而有之,都不可能很快就会实现。Gartner 预测,如果目前的趋势持续下去的话,到 2022 年,发达国家的大多数人将会看到更多的虚假信息,而不是真实信息。

作者介绍

Kyle Wiggers 居住在美国纽约市,是 VentureBeat 的人工智能专栏作者。


原文链接:


https://venturebeat.com/2019/10/15/mit-csail-fights-fake-news-with-ai/


2019-10-22 08:002229

评论

发布
暂无评论
发现更多内容

ARM和X86云服务器的算力对比

Python研究所

签约计划

百余大企业共赴新文明之约:2021 DEMO WORLD 世界创新峰会拉开帷幕

创业邦

创新

🍃【SpringCloud基础使用】Nacos与Gateway实现动态路由

洛神灬殇

nacos SpringCloud Gateway 5月日更 自定义配置

量化网格策略交易软件,马丁倍投策略机器人

Vue-1-初识

Python研究所

签约计划

牛x运维常用的工具系列-1

运维研习社

运维 工具分享 5月日更

MPP大规模并行处理架构详解

五分钟学大数据

大数据 MPP 5月日更

公安局重点人员研判分析系统解决方案

获得业内一致好评!华山版Java性能优化全栈手册“登场”

Java架构追梦

Java 阿里巴巴 架构 性能优化 华山版

中国呼叫中心与卓越客服产业峰会,百度智能客服再提行业创新

百度大脑

解决方案 行业创新

从零开始学习ThingJS之创建App对象

ThingJS数字孪生引擎

可视化 3D可视化 数字孪生

40K成功入职:六年开发终获小米Offer(附面经+面试题+答案详解)

Java架构师迁哥

🔎【Java源码探索】深入浅出的分析HashMap(JDK8)

洛神灬殇

Java 源码 源码分析 hashmap 5月日更

Fabric | 自动化神器

Python研究所

签约计划

走向机器智能时代:移动机器人的困局与创新

晨山资本

机器人 移动机器人 AMR

如何评估 Serverless 服务能力?这份报告给出了 40 条标准

Serverless Devs

云计算 云原生 Forrester Wave #Serverless

面阿里P7,竟问这么简单的题目?

Java架构师迁哥

获5项大奖,发布《云计算开放应用架构标准》,阿里云持续领航云原生

阿里巴巴中间件

云计算 最佳实践 云原生 案例 白皮书

工业4.0加速实现“数物相合”,可视化工厂节省时效高达85%

一只数据鲸鱼

人工智能 数据可视化 工业互联网 智慧工厂 智能生产

脉脉3小时转发65w次!这份Java面试宝典发生了什么?

Java架构师迁哥

现在已经卷到需要问三色标记了吗?

艾小仙

活动预告 _ 即构×火山引擎:泛娱乐社交音视频技术实践沙龙

ZEGO即构

用Python在树莓派上播放音乐

IT蜗壳-Tango

5月日更

我厂与张家港市达成全面战略合作,共推数据中心和城市智能化转型

百度大脑

数据中心 城市智能化

1小时内被全网疯转 29.8w 次,最终被所有大V协力封杀!

Java架构师迁哥

编曲新手可以用什么编曲软件?

奈奈的杂社

编曲 编曲宿主 编曲软件

答应我,别再学Swing框架了好吗?

北游学Java

Java spring swing

服务可达,达者为先,产品发布会嘉宾精彩观点分享!

博睿数据

博睿数据 数据链DNA 服务可达

Bugless 异常监控系统 (iOS端)

37手游iOS技术运营团队

ios iOS Developer 崩溃分析 bugless

论证:iOS安全性,为什么需要审核?

37手游iOS技术运营团队

ios SIP Sandbox iOS Developer ios安全

MeterSphere | 超好用的开源测试平台

Python研究所

签约计划

对抗铺天盖地的假新闻,MIT开发AI检测系统自动识别虚假消息_AI&大模型_Kyle Wiggers_InfoQ精选文章