写点什么

微软北大造出超逼真 AI 换脸框架,顺便搞了个伪人脸检测器,网友:自造矛和盾?

  • 2020-01-07
  • 本文字数:1769 字

    阅读完需:约 6 分钟

微软北大造出超逼真AI换脸框架,顺便搞了个伪人脸检测器,网友:自造矛和盾?

以 Deepfake 为代表的 AI 换脸技术营造出的“以假乱真”的效果让人感到细思极恐,不过现有的一些生成工具还不能达到完全逼真的换脸效果,有的存在不少破绽,有的换脸效果很不自然,能轻易让人识别出来。近日,微软和北大的研究人员提出了一种新的 AI 换脸框架— FaceShifter,其能够大大提高换脸的高保真度。AI 换脸技术在爆红的同时也伴随着因滥用带来的隐忧,研究团队还提出了一种检测伪造人脸图像的方法—Face X-Ray,能够检测出复杂的伪造人脸图像。


近日,微软研究院和北京大学的研究团队发表了 2 篇学术论文,一篇关于生成高保真图像且能识别遮挡物的人脸交换框架— FaceShifter,另一篇关于检测伪造人脸图像的方法——Face X-Ray。


研究人员表示,这两项技术优于以前许多同类技术,所需数据也更少,且不会以牺牲性能代价。



微软的 FaceShifter 与现有方法对比


据了解,FaceShifter 能用源图像中的人替换掉目标图像中的人,同时保留了头部姿态、面部表情、光线、颜色、强度、背景和其他特征。但像 Reflect 和 FaceSwap 这样的应用程序声称也可以准确地做到这一点,但是微软论文的合著者表示,FaceShifter 对姿势和视角变化更加敏感。


FaceShifter 通过生成式对抗网络(GAN)来提高人脸交换的保真度,自适应嵌入集成网络(AEI-Net)是一款由一个生成器组成的 AI 模型,该生成器的作用是迷惑鉴别器,让鉴别器把合成的样本归类为真实样本。它可以在不同空间分辨率中提取属性。


值得一提的是,AEI-Net 整合了研究人员所称的注意力非正规化(AAD)层,该层可自适应地学习在哪里整合面部属性,而单独的模型“启发式错误识别细化网络(HEAR-Net)”,则利用了重建图像与其输入之间的差异来识别斑点遮挡。




来自 FaceShifter 上的示例


再来单独感受下周杰伦“换脸”的过程~



微软的研究团队表示,在定性测试中,FaceShifter 保留了人脸轮廓,并准确地还原了目标的光线和图像分辨率。此外,即使是从互联网上抓取的“陌生面孔”,该框架也学会了在不依赖人工标注数据的情况下恢复异常区域——包括眼镜、阴影和反射效果,以及其他遮挡物。


研究小组称,“这款框架在生成逼真的人脸图像方面表现优异。大量实验表明,该框架明显优于以前的人脸交换方法。”


与现有的框架不同的是,FaceShifter 不需要事先了解操作方法,也不用人工监督。相反,它生成灰度图像,提示给定输入图像是否能分解成不同来源的两张图片的混合。研究小组表示,这是可行的,因为大多数面部处理方法都有一个共同的步骤,那就是将改变过的脸部混合到现有的背景图像中。在混合过程中,每幅图像都夹杂着各自独特的标记,这些标记要么来自硬件(如传感器和透镜),要么来自软件组件(如压缩和合成算法),而且这些标记与整幅图像趋于融合。



我们再来说一说 Face X-Ray。Face X-Ray 不需要依赖与人脸“造假技术”相关的知识,并且,Face X-Ray 的算法可以在不通过任何方法生成伪图像的情况下进行训练。


与 FaceShifter 不同的是,Face X-Ray 的作用是用于检测伪造的虚假头像。目前,伪造头像被滥用的情况横行网络。去年 6 月,一份报告显示,一名间谍利用 AI 生成的个人资料图片欺骗了 LinkedIn 上的联系人,同年 12 月,Facebook 发现了数百个利用 AI 合成的假脸作头像的虚假账户。研究人员表示,确实需要像 Face X-Ray 这样的工具来检测深度伪造的图像。


FaceForensics ++是一个大型视频语料库,其中包含四种使用先进人脸操作方法操作的 1000 多个原始剪辑。研究人员在 FaceForensics ++上对 Face X-Ray 进行了训练。研究人员评估了 Face X-Ray 归纳四个数据集的能力,其中包括 FaceForensics ++语料库的一个子集;Google 发布的上千个可视化Deepfake视频;来自Deepfake检测挑战的图像; 以及一个包含 408 个真实视频和 795 个合成视频的语料库 Celeb-DF。


结果表明,Face X-Ray 能够分辨出以前从未见过的伪造图像,并能准确地预测混合区域。该团队指出,他们的方法是针对混合图像的,因此,它可能不适用于完全合成的图像,可能被对抗样本骗过。暂且撇开这个不谈,研究团队认为,这是迈向伪造人脸检测的重要一步。


原文链接:


https://venturebeat.com/2020/01/06/microsoft-researchers-propose-face-swapping-ai-and-face-forgery-detector/


论文链接:


FaceShifter:https://arxiv.org/pdf/1912.13457.pdf


Face X-ray:https://arxiv.org/pdf/1912.13458.pdf


2020-01-07 14:228242
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 549.8 次阅读, 收获喜欢 1978 次。

关注

评论 1 条评论

发布
用户头像
以彼之矛攻彼之盾,目前还是难分伯仲。但魔高一尺道高一丈,未来,相信检测深度造假的算法定会战胜深度造假算法。
2020-01-09 16:23
回复
没有更多了
发现更多内容

超24W字,2021最新一线大厂Java高级架构师面试题总结,共计480页

Java架构师迁哥

学生管理系统详细架构设计文档

消失的子弹

大数据 云原生 CMS

学生管理系统架构设计

guangbao

在线JSON转flow工具

入门小站

工具

Github上星标85k的,图解操作系统、网络、计算机 PDF,竟是阿里的?

Java架构师迁哥

如何看待写作这件事

QualityFocus

个人成长 写作 写作感悟

学生管理系统详细架构设计

毛先生

linux之rename命令

入门小站

Linux

阿里P8近十年的开发经验总结,卖168元,你觉得贵吗?

Java架构师迁哥

架构实战营第三次作业

Geek_d18264

架构实战营

汽车行业的进化秘诀,竟在这座智慧出行乐园中……

白洞计划

膜拜!“Java葵花宝典”脉脉一周狂转50w次,Github访问量破百万

Java架构师迁哥

知乎上线1小时,5w浏览量被下架的JVM全解笔记,内容太强大

Java架构师迁哥

双非渣本后端,三个月逆袭字节,入职那天“泪目”了

Java架构师迁哥

【MySQL技术专题】这也许是你的知识盲区->[主从架构]的多种同步模式

洛神灬殇

主从同步 高可用架构 MySQL 数据库 9月日更

pymssql

IT蜗壳-Tango

9月日更

JVM类加载器学习笔记

风翱

JVM 9月日更

白手起家之分布式搜索ES

卢卡多多

9月日更

阿里开源的面试全面解析,为什么会在Github一周标星63K?

Java架构师迁哥

算法有救了!GitHub上神仙项目手把手带你刷算法,Star数已破110k

Java架构师迁哥

微服务到底是什么?spring cloud在国内中小型公司能用起来吗?

Java架构师迁哥

学生管理系统架构设计方案

Nico

低代码平台J2PaaS即将发布开源版

J2PaaS低代码平台

低代码 开发工具 无代码

33岁公司倒闭,被迫走上大龄Java程序员求职之路

Java架构师迁哥

阿里内部不外传的50万字Java面试手册,首次开放,一天遭狂转10w次

Java架构师迁哥

覆盖80%以上Java性能调优场景,三年开发经验以下慎入

Java架构师迁哥

双非渣本后端,三个月逆袭字节,入职那天“泪目”了

Java架构师迁哥

天猫“618”亿级高并发设计实战手册,限时分享

Java架构师迁哥

一妹子揭露美团面试中一些不愉快的事情(Java岗)

Java架构师迁哥

Github上标星80k的笔记就是diao,一个月帮我斩获8家大厂offer

Java架构师迁哥

网络攻防学习笔记 Day138

穿过生命散发芬芳

无线网络安全 9月日更

微软北大造出超逼真AI换脸框架,顺便搞了个伪人脸检测器,网友:自造矛和盾?_AI&大模型_刘燕_InfoQ精选文章