报名参加CloudWeGo黑客松,奖金直推双丰收! 了解详情
写点什么

浅入浅出智能合约 - 部署(二)

  • 2019-12-05
  • 本文字数:3642 字

    阅读完需:约 12 分钟

浅入浅出智能合约 - 部署(二)


上一篇文章 浅入浅出智能合约 - 概述(一) 介绍了智能合约中的一些基本概念以及面向合约的编程语言 Solidity,在这篇文章中我们将要介绍智能合约在编写之后是如何部署到 Ethereum 网络的。



部署一个新的智能合约或者说 DApp 其实总共只需要两个步骤,首先要将已经编写好的合约代码编译成二进制代码,然后将二进制数据和构造参数打包成交易发送到网络中,等待当前交易被矿工追加到区块链就可以了。

编译

合约代码的编译过程非常简单,我们使用如下的合约代码为例,简单介绍合约的编译过程:


JavaScript


pragma solidity ^0.4.22;
contract Contract { constructor() public { }}
复制代码


编译 Solidity 代码需要 solidity 编译器参与工作,编译器的使用也非常简单,我们可以直接使用如下的命令将上述合约编译成二进制:


Bash


$ solc --bin contract.sol
======= contract.sol:Contract =======Binary:6080604052348015600f57600080fd5b50603580601d6000396000f3006080604052600080fd00a165627a7a72305820d9b24bc33db482b29de2352889cc2dfeb66029c28b0daf251aad5a5c4788774a0029
复制代码


如果我们使用了 Ethereum Wallet 等客户端,就可以将上述二进制数据添加到如下图所示的 DATA 中:



用于创建合约的交易不需要填写目标地址需要在 DATA 中填写合约的二进制数据和编码后的构造器二进制参数,由于这个合约的构造器并不包含任何参数,所以我们只需要添加合约的二进制数据,点击发送后会生成如下的交易 e74c796a041bad60469f2ee023c87e08


JavaScript


{    "jsonrpc": "2.0",    "id": 1,    "result": {        "blockHash": "0xfb508342b89066fe2efa45d7dbb9a3ae241486eee66103c03049e2228a159ee8",        "blockNumber": "0x208c0a",        "from": "0xe118559d65f87aaa8caa4383b112ff679a21223a",        "gas": "0x2935a",        "gasPrice": "0x9502f9000",        "hash": "0xe74c796a041bad60469f2ee023c87e087847a6603b27972839d0c0de2e852315",        "input": "0x6080604052348015600f57600080fd5b50603580601d6000396000f3006080604052600080fd00a165627a7a72305820d9b24bc33db482b29de2352889cc2dfeb66029c28b0daf251aad5a5c4788774a0029",        "nonce": "0x2",        "to": null,        "transactionIndex": "0x5",        "value": "0x0",        "v": "0x2c",        "r": "0xa5516d78a7d486d111f818b6b16eef19989ccf46f44981ed119f12d5578022db",        "s": "0x7125e271468e256c1577b1d7a40d26e2841ff6f0ebcc4da073610ab8d76c19d5"    }}
复制代码


在这个用于创建合约的特殊交易中,我们可以看到目标地址 to 的值为空,input 的值就是我们在 Ethereum Wallet 中发送交易时填写的 DATA,即合约的二进制代码。这笔交易被纳入区块链之后,我们就能在 Etherscan 上看到这笔交易成功的创建了一个合约 0xa6a158a131476d4e071f4a3a0d9af2d88769b25a

发送

从上面的测试已经可以看到合约都是由交易(Transaction)创建的,每一个创建合约的交易的 to 字段都是 null,而 input 是合约代码编译之后的二进制;经历了编译这一过程,剩下的就是交易的打包、签名和发送了。


在这里,我们可以通过阅读一个经典的 Ethereum 实现 parity 的源代码来研究交易是如何打包、签名和发送的;从源代码中,我们可以找到签名交易的入口 sign_transaction 函数:


Rust


// parity/rpc/src/v1/traits/eth_signing.rs#[rpc(meta, name = "eth_signTransaction")]fn sign_transaction(&self, Self::Metadata, TransactionRequest) -> BoxFuture<RichRawTransaction>;
// parity/rpc/src/v1/impls/signing.rsfn sign_transaction(&self, meta: Metadata, request: RpcTransactionRequest) -> BoxFuture<RpcRichRawTransaction> { let res = self.dispatch( RpcConfirmationPayload::SignTransaction(request), meta.dapp_id().into(), meta.origin, );
Box::new(res.flatten().and_then(move |response| { match response { RpcConfirmationResponse::SignTransaction(tx) => Ok(tx), e => Err(errors::internal("Unexpected result.", e)), } }))}
复制代码


上述函数初始化了一个 RpcConfirmationPayload::SignTransaction 结构体并在最后调用 fill_optional_fields 将请求中的参数 fromtononcegas_pricegasvaluedata 以及 condition 等数据填入到最终被签名的交易中:


Rust


// rpc/src/v1/helpers/dispatch.rsfn fill_optional_fields(&self, request: TransactionRequest, default_sender: Address, force_nonce: bool)                        -> BoxFuture<FilledTransactionRequest>{  let request = request;  let from = request.from.unwrap_or(default_sender);  let nonce = if force_nonce {    request.nonce.or_else(|| Some(self.state_nonce(&from)))  } else {    request.nonce  };
Box::new(future::ok(FilledTransactionRequest { from, used_default_from: request.from.is_none(), to: request.to, nonce, gas_price: request.gas_price.unwrap_or_else(|| { default_gas_price(&*self.client, &*self.miner, self.gas_price_percentile) }), gas: request.gas.unwrap_or_else(|| self.miner.sensible_gas_limit()), value: request.value.unwrap_or_else(|| 0.into()), data: request.data.unwrap_or_else(Vec::new), condition: request.condition, }))}
复制代码


经过内部的两次 RPC 请求 SignTransactionSignMessage 最后会由 signature.rs 文件中的 sign 函数使用 secp256k1 完成对传入数据的签名:


Rust


// ethkey/src/signature.rspub fn sign(secret: &Secret, message: &Message) -> Result<Signature, Error> {  let context = &SECP256K1;  let sec = SecretKey::from_slice(context, &secret)?;  let s = context.sign_recoverable(&SecpMessage::from_slice(&message[..])?, &sec)?;  let (rec_id, data) = s.serialize_compact(context);  let mut data_arr = [0; 65];
// no need to check if s is low, it always is data_arr[0..64].copy_from_slice(&data[0..64]); data_arr[64] = rec_id.to_i32() as u8; Ok(Signature(data_arr))}
复制代码


eth_signTransaction 的作用其实只有两部分,一部分是将传入的参数组合成一个交易,另一部分是通过 secp256k1 对交易进行签名:



签名好的二进制交易可以通过 eth_sendRawTransaction 广播到整个 Ethereum 网络,而 JSON 格式的交易可以通过 eth_sendTransaction 发送:


Rust


// parity/rpc/src/v1/traits/eth.rs#[rpc(name = "eth_sendRawTransaction")]fn send_raw_transaction(&self, Bytes) -> Result<H256>;
// parity/rpc/src/v1/impls/eth.rsfn send_raw_transaction(&self, raw: Bytes) -> Result<RpcH256> { Rlp::new(&raw.into_vec()).as_val() .map_err(errors::rlp) .and_then(|tx| SignedTransaction::new(tx).map_err(errors::transaction)) .and_then(|signed_transaction| { FullDispatcher::dispatch_transaction( &*self.client, &*self.miner, signed_transaction.into(), ) }) .map(Into::into)}
复制代码


send_raw_transaction 最终会将签名好的交易加入到当前节点的交易队列等待处理,交易队列中的交易随后会广播到整个网络中并被整个网络确认并纳入新的区块中。


Rust


fn import_own_transaction<C: miner::BlockChainClient>(  &self,  chain: &C,  pending: PendingTransaction,) -> Result<(), transaction::Error> {  let client = self.pool_client(chain);  let imported = self.transaction_queue.import(    client,    vec![pool::verifier::Transaction::Local(pending)]  ).pop().expect("one result returned per added transaction; one added => one result; qed");
if imported.is_ok() && self.options.reseal_on_own_tx && self.sealing.lock().reseal_allowed() { if self.engine.seals_internally().unwrap_or(false) || !self.prepare_pending_block(chain) { self.update_sealing(chain); } }
imported}
复制代码


当交易成为新区块的一部分之后,我们就能通过 Etherscan 或者其他方式查看被创建合约 0xa6a158a131476d4e071f4a3a0d9af2d88769b25a 的信息了。

总结

在 Ethereum 上部署合约的过程其实与交易发送的过程基本完全相似,唯一的区别就是用于创建合约的交易目前地址为空,并且 data 字段中的内容就是合约的二进制代码,也就是合约的部署由两部分组成:编译合约和发送消息。对于合约的部署这里差不多介绍完了,在下一篇文章中,我们将分析如何调用智能合约中声明的函数。


本文转载自 Draveness 技术博客。


原文链接:https://draveness.me/smart-contract-deploy


2019-12-05 18:17956

评论

发布
暂无评论
发现更多内容

5年Java经验字节社招:半月3次面试,成功拿到Offer,大厂Mysql高频面试题

Java 程序员 后端

09 K8S之对象类资源配置

穿过生命散发芬芳

k8s 11月日更

@RequestMapping详解,隔壁都馋哭了

Java 程序员 后端

【Java 原理剖析系列】深度分析 Semaphore工作原理分析

码界西柚

Java 并发编程 Semaphore 11月日更

2021版最新!字节跳动3面+腾讯6面一次过,java高级特性面试题

Java 程序员 后端

BATJ互联网公司必问知识点:Spring十个面试专题及答案,java技术面试总结评语

Java 程序员 后端

APP性能优化系列-自定义启动器(三),阿里巴巴java面试几轮

Java 程序员 后端

95 后程序员一出校门就拿年薪 32 万?,java入门视频教学

Java 程序员 后端

BATJ互联网公司面试必问知识点:Spring全家桶全解,java分布式框架技术方案

Java 程序员 后端

3分钟快速搞懂Java的桥接方法,Java多态实现原理解析

Java 程序员 后端

如何将字符串截取成一个集合

卢卡多多

内容合集 11月日更

BAT面试必考Java面试题100+:Kafka,mysql连接查询原理

Java 程序员 后端

谈一谈区块链项目使用的数据库LevelDB

Regan Yue

区块链 leveldb 11月日更

30岁,转行学编程靠谱吗?,java银行面试的问题

Java 程序员 后端

7张图带你轻松理解Java 线程安全,java开发架构思想

Java 程序员 后端

linux之git入门命令

入门小站

Linux

最佳实践|Apache Pulsar 在拉卡拉的技术实践

Apache Pulsar

开源 架构 中间件 Apache Pulsar 消息系统 Apache 分布式

97 道大厂 Java 核心面试题出炉,来试试看你会几道题?

Java 程序员 后端

AcWing 1532,java教程下载网盘

Java 程序员 后端

一文了解 PG PITR 即时恢复

青云技术社区

数据库 postgresql 云计算

2021版阿里Java亿级并发设计手册:基础+数据库,linux服务器开发需要的技术

Java 程序员 后端

在线文本去空行工具

入门小站

工具

BATJ互联网月薪45K的Java岗面试题首次曝光,掌握这些Offer指定跑不了

Java 程序员 后端

30天熬夜苦学这本Java后端架构设计精讲,大厂三面架构问题so easy

Java 程序员 后端

50道Java面试常问的基础知识,虽是基础但是避坑之路可得小心谨慎

Java 程序员 后端

双维度第一!百度智能云领衔中国“AI+工业互联网”市场领导者阵营

百度大脑

人工智能 百度

6种新方法帮你提高Java学习能力,mysql教程入门到精通pdf

Java 程序员 后端

2021阿里大牛最新发布:Java高频面试题和核心技术(已涨薪6K

Java 程序员 后端

2021秋招必刷题:Redis+Mybatis,java使用教程答案

Java 程序员 后端

BATJ互联网公司必问知识点:Spring十个面试专题及答案(1)

Java 程序员 后端

2021毕业的Java应届生,面试需要掌握哪些技能,才能收割offer

Java 程序员 后端

浅入浅出智能合约 - 部署(二)_语言 & 开发_Draveness_InfoQ精选文章