AICon 上海站|90%日程已就绪,解锁Al未来! 了解详情
写点什么

浅入浅出智能合约 - 部署(二)

  • 2019-12-05
  • 本文字数:3642 字

    阅读完需:约 12 分钟

浅入浅出智能合约 - 部署(二)


上一篇文章 浅入浅出智能合约 - 概述(一) 介绍了智能合约中的一些基本概念以及面向合约的编程语言 Solidity,在这篇文章中我们将要介绍智能合约在编写之后是如何部署到 Ethereum 网络的。



部署一个新的智能合约或者说 DApp 其实总共只需要两个步骤,首先要将已经编写好的合约代码编译成二进制代码,然后将二进制数据和构造参数打包成交易发送到网络中,等待当前交易被矿工追加到区块链就可以了。

编译

合约代码的编译过程非常简单,我们使用如下的合约代码为例,简单介绍合约的编译过程:


JavaScript


pragma solidity ^0.4.22;
contract Contract { constructor() public { }}
复制代码


编译 Solidity 代码需要 solidity 编译器参与工作,编译器的使用也非常简单,我们可以直接使用如下的命令将上述合约编译成二进制:


Bash


$ solc --bin contract.sol
======= contract.sol:Contract =======Binary:6080604052348015600f57600080fd5b50603580601d6000396000f3006080604052600080fd00a165627a7a72305820d9b24bc33db482b29de2352889cc2dfeb66029c28b0daf251aad5a5c4788774a0029
复制代码


如果我们使用了 Ethereum Wallet 等客户端,就可以将上述二进制数据添加到如下图所示的 DATA 中:



用于创建合约的交易不需要填写目标地址需要在 DATA 中填写合约的二进制数据和编码后的构造器二进制参数,由于这个合约的构造器并不包含任何参数,所以我们只需要添加合约的二进制数据,点击发送后会生成如下的交易 e74c796a041bad60469f2ee023c87e08


JavaScript


{    "jsonrpc": "2.0",    "id": 1,    "result": {        "blockHash": "0xfb508342b89066fe2efa45d7dbb9a3ae241486eee66103c03049e2228a159ee8",        "blockNumber": "0x208c0a",        "from": "0xe118559d65f87aaa8caa4383b112ff679a21223a",        "gas": "0x2935a",        "gasPrice": "0x9502f9000",        "hash": "0xe74c796a041bad60469f2ee023c87e087847a6603b27972839d0c0de2e852315",        "input": "0x6080604052348015600f57600080fd5b50603580601d6000396000f3006080604052600080fd00a165627a7a72305820d9b24bc33db482b29de2352889cc2dfeb66029c28b0daf251aad5a5c4788774a0029",        "nonce": "0x2",        "to": null,        "transactionIndex": "0x5",        "value": "0x0",        "v": "0x2c",        "r": "0xa5516d78a7d486d111f818b6b16eef19989ccf46f44981ed119f12d5578022db",        "s": "0x7125e271468e256c1577b1d7a40d26e2841ff6f0ebcc4da073610ab8d76c19d5"    }}
复制代码


在这个用于创建合约的特殊交易中,我们可以看到目标地址 to 的值为空,input 的值就是我们在 Ethereum Wallet 中发送交易时填写的 DATA,即合约的二进制代码。这笔交易被纳入区块链之后,我们就能在 Etherscan 上看到这笔交易成功的创建了一个合约 0xa6a158a131476d4e071f4a3a0d9af2d88769b25a

发送

从上面的测试已经可以看到合约都是由交易(Transaction)创建的,每一个创建合约的交易的 to 字段都是 null,而 input 是合约代码编译之后的二进制;经历了编译这一过程,剩下的就是交易的打包、签名和发送了。


在这里,我们可以通过阅读一个经典的 Ethereum 实现 parity 的源代码来研究交易是如何打包、签名和发送的;从源代码中,我们可以找到签名交易的入口 sign_transaction 函数:


Rust


// parity/rpc/src/v1/traits/eth_signing.rs#[rpc(meta, name = "eth_signTransaction")]fn sign_transaction(&self, Self::Metadata, TransactionRequest) -> BoxFuture<RichRawTransaction>;
// parity/rpc/src/v1/impls/signing.rsfn sign_transaction(&self, meta: Metadata, request: RpcTransactionRequest) -> BoxFuture<RpcRichRawTransaction> { let res = self.dispatch( RpcConfirmationPayload::SignTransaction(request), meta.dapp_id().into(), meta.origin, );
Box::new(res.flatten().and_then(move |response| { match response { RpcConfirmationResponse::SignTransaction(tx) => Ok(tx), e => Err(errors::internal("Unexpected result.", e)), } }))}
复制代码


上述函数初始化了一个 RpcConfirmationPayload::SignTransaction 结构体并在最后调用 fill_optional_fields 将请求中的参数 fromtononcegas_pricegasvaluedata 以及 condition 等数据填入到最终被签名的交易中:


Rust


// rpc/src/v1/helpers/dispatch.rsfn fill_optional_fields(&self, request: TransactionRequest, default_sender: Address, force_nonce: bool)                        -> BoxFuture<FilledTransactionRequest>{  let request = request;  let from = request.from.unwrap_or(default_sender);  let nonce = if force_nonce {    request.nonce.or_else(|| Some(self.state_nonce(&from)))  } else {    request.nonce  };
Box::new(future::ok(FilledTransactionRequest { from, used_default_from: request.from.is_none(), to: request.to, nonce, gas_price: request.gas_price.unwrap_or_else(|| { default_gas_price(&*self.client, &*self.miner, self.gas_price_percentile) }), gas: request.gas.unwrap_or_else(|| self.miner.sensible_gas_limit()), value: request.value.unwrap_or_else(|| 0.into()), data: request.data.unwrap_or_else(Vec::new), condition: request.condition, }))}
复制代码


经过内部的两次 RPC 请求 SignTransactionSignMessage 最后会由 signature.rs 文件中的 sign 函数使用 secp256k1 完成对传入数据的签名:


Rust


// ethkey/src/signature.rspub fn sign(secret: &Secret, message: &Message) -> Result<Signature, Error> {  let context = &SECP256K1;  let sec = SecretKey::from_slice(context, &secret)?;  let s = context.sign_recoverable(&SecpMessage::from_slice(&message[..])?, &sec)?;  let (rec_id, data) = s.serialize_compact(context);  let mut data_arr = [0; 65];
// no need to check if s is low, it always is data_arr[0..64].copy_from_slice(&data[0..64]); data_arr[64] = rec_id.to_i32() as u8; Ok(Signature(data_arr))}
复制代码


eth_signTransaction 的作用其实只有两部分,一部分是将传入的参数组合成一个交易,另一部分是通过 secp256k1 对交易进行签名:



签名好的二进制交易可以通过 eth_sendRawTransaction 广播到整个 Ethereum 网络,而 JSON 格式的交易可以通过 eth_sendTransaction 发送:


Rust


// parity/rpc/src/v1/traits/eth.rs#[rpc(name = "eth_sendRawTransaction")]fn send_raw_transaction(&self, Bytes) -> Result<H256>;
// parity/rpc/src/v1/impls/eth.rsfn send_raw_transaction(&self, raw: Bytes) -> Result<RpcH256> { Rlp::new(&raw.into_vec()).as_val() .map_err(errors::rlp) .and_then(|tx| SignedTransaction::new(tx).map_err(errors::transaction)) .and_then(|signed_transaction| { FullDispatcher::dispatch_transaction( &*self.client, &*self.miner, signed_transaction.into(), ) }) .map(Into::into)}
复制代码


send_raw_transaction 最终会将签名好的交易加入到当前节点的交易队列等待处理,交易队列中的交易随后会广播到整个网络中并被整个网络确认并纳入新的区块中。


Rust


fn import_own_transaction<C: miner::BlockChainClient>(  &self,  chain: &C,  pending: PendingTransaction,) -> Result<(), transaction::Error> {  let client = self.pool_client(chain);  let imported = self.transaction_queue.import(    client,    vec![pool::verifier::Transaction::Local(pending)]  ).pop().expect("one result returned per added transaction; one added => one result; qed");
if imported.is_ok() && self.options.reseal_on_own_tx && self.sealing.lock().reseal_allowed() { if self.engine.seals_internally().unwrap_or(false) || !self.prepare_pending_block(chain) { self.update_sealing(chain); } }
imported}
复制代码


当交易成为新区块的一部分之后,我们就能通过 Etherscan 或者其他方式查看被创建合约 0xa6a158a131476d4e071f4a3a0d9af2d88769b25a 的信息了。

总结

在 Ethereum 上部署合约的过程其实与交易发送的过程基本完全相似,唯一的区别就是用于创建合约的交易目前地址为空,并且 data 字段中的内容就是合约的二进制代码,也就是合约的部署由两部分组成:编译合约和发送消息。对于合约的部署这里差不多介绍完了,在下一篇文章中,我们将分析如何调用智能合约中声明的函数。


本文转载自 Draveness 技术博客。


原文链接:https://draveness.me/smart-contract-deploy


2019-12-05 18:17975

评论

发布
暂无评论
发现更多内容

从零开始分析InstantRun源码,kotlin实现接口

android 程序员 移动开发

作为一名面试者你应该知道的【上-带大厂面试题】,android组件化开发与sdk

android 程序员 移动开发

使用C#创建,查看,2021大厂Android面试题精选

android 程序员 移动开发

全网唯一一份,从入门到精通的Android进阶学习笔记整理,Android应用层

android 程序员 移动开发

作为一名Android面试官,这些面试官常问的开发面试题你都掌握好了吗?

android 程序员 移动开发

使用更为安全的方式收集 Android UI 数据流,深入浅出Android

android 程序员 移动开发

做android开发一直不相信35岁危机,好像被自己遇到了,9次Android面试经验总结

android 程序员 移动开发

做个酷炫的“锤子” 开关效果,kotlinwindows桌面开发

android 程序员 移动开发

做了6年Android开发,你会的还只有初级工程师的技术吗?

android 程序员 移动开发

做了三年Android,公司发不出工资了,怎么办,阿里、腾讯大厂Android面试必问知识点系统梳理

android 程序员 移动开发

从零开始学数据结构和算法-(五)-分治法-(二分查找、快速排序、归并排序)

android 程序员 移动开发

任性!我开发了一款自己用的天气预报app,android双击事件响应

android 程序员 移动开发

仿微信视频通话大小视图切换(SurfaceView实现),面试官6个灵魂拷问

android 程序员 移动开发

演进实录|不同阶段的企业如何搭建监控体系?

阿里巴巴云原生

阿里云 Kubernetes 容器 云原生 监控工具

作为程序员的我们应该如何在当今国内的信息产业生存?,万字解析

android 程序员 移动开发

我以为对jvm性能调优很了解,直到我到阿里面试完之后

Java 程序员 JVM

你确定自己学会了自定义MarqueeView?这个你会吗?进来看看吧

android 程序员 移动开发

使用 Kotlin API 实践 WorkManager,看完豁然开朗

android 程序员 移动开发

使用 Flutter 快速实现聊天应用,计算机移动应用开发

android 程序员 移动开发

从面试无人问津到手拿百度offer,还原一段野生程序员的成长经历

android 程序员 移动开发

作为一名Android开发者,你有过迷茫吗?,面经解析

android 程序员 移动开发

质量基础设施一站式服务平台,NQI云服务平台搭建

电微13828808271

作为Android开发者,你真的知道Android按下开机键到启动发生什么吗?

android 程序员 移动开发

使用Google开源库AutoService进行组件化开发,移动应用开发课程设计心得

android 程序员 移动开发

全网热议:Android 在未来是否会走向终结?,android路由实现

android 程序员 移动开发

从零开始学数据结构和算法 (五) 分治法 (二分查找、快速排序、归并排序)

android 程序员 移动开发

【设计模式】第八篇 - 原型模式 - DOTA-幻影长矛手

Brave

设计模式 原型设计 11月日更

作为一名Android面试官,这些面试官常问的开发面试题你都掌握好了吗?(1)

android 程序员 移动开发

作为面试官,如何考察工程师的软素质,Android开发经典实战

android 程序员 移动开发

你告诉我太卡了,那是你不晓得性能优化之app卡顿优化,销售应届毕业生的面试题

android 程序员 移动开发

你知道App为什么会Crash吗?,Android性能优化之APK优化

android 程序员 移动开发

浅入浅出智能合约 - 部署(二)_语言 & 开发_Draveness_InfoQ精选文章