QCon北京「鸿蒙专场」火热来袭!即刻报名,与创新同行~ 了解详情
写点什么

AAAI 2020 论文解读: 商汤科技发布新视频语义分割和光流联合学习算法

  • 2020-02-16
  • 本文字数:2800 字

    阅读完需:约 9 分钟

AAAI 2020论文解读: 商汤科技发布新视频语义分割和光流联合学习算法

视频语义分割的一个主要的挑战是缺少标注数据。在大多数基准数据集中,每个视频序列(20 帧)往往只有一帧是有标注的,这使得大部分监督方法都无法利用剩余的数据。为了利用视频中的时间 - 空间信息,许多现有工作使用预先计算好的光流来提升视频分割的性能,然而视频分割和语义分割仍然被看作是两个独立的任务。近日,商汤科技研究团队发表论文《Every Frame Counts: Joint Learning of Video Segmentation and Optical Flow》,该论文被 AAAI 2020 录用。


在这篇文章中,作者提出了一个新颖的光流和语义分割联合学习方案。语义分割为光流和遮挡估计提供了更丰富的语义信息,而非遮挡的光流保证了语义分割的像素级别的时序一致性。作者提出的语义分割方案不仅可以利用视频中的所有图像帧,而且在测试阶段不增加额外的计算量。

背景

视频语义分割通过利用前后帧的语义信息,往往有着比图像分割更高的准确率,因此在机器人和自动驾驶领域有着丰富的应用。然而目前的视频语义分割主要面临两个挑战:缺少标注数据和实时性的问题。一方面由于标注工作耗时耗力,一个视频片段往往只标注一帧,导致很多方法难以利用全部的数据,或者需要使用额外的数据集做预训练;另一方面由于对前后帧之间进行信息交互往往为模型引入额外的模块,导致视频分割效率低。视频分割大致可以分为两类,第一类通过利用前后帧的时序信息来为视频分割加速,如 Clockwork network (Shelhamer et al. 2016) ,Deep Feature Flow (Zhu et al. 2017) 和 (Li, Shi, and Lin 2018) 等,这类模型对前一帧的特征图或者分割结果进行简单处理即可得到下一帧的分割结果了,从而大大减少视频分割中的冗余和加速,但语义分割的准确率会有所降低;第二类方法如 (Fayyaz et al. 2016) ,Netwarp (Gadde, Jampani, and Gehler 2017),PEARL (Jin et al. 2017) 等通过光流/RNN 等模块将前后帧的特征进行融合或添加约束以学习到更强的表示能力,从而提高语义分割的准确率。本文的方法属于第二类。



图一,和使用特征融合(feature aggregation)的方法往往只利用标注帧附近的少数帧相比,本文通过学习的光流来为视频帧添加时序一致性约束,通过这种约束可以间接把分割标注传导到其他无标注的帧上,从而利用全部的数据。


方法概述

光流作为视频中前后帧之间像素级别的关联,在视频语义分割中一直有着重要的地位。例如 (Li, Shi, and Lin 2018; Zhu et al. 2017; Shelhamer et al. 2016) 通过光流来重新利用前一帧的特征图从而为视频分割加速;(Fayyaz et al. 2016; Jin et al. 2017; Gadde, Jampani, and Gehler 2017; Nilsson and Sminchisescu 2018; Hur and Roth 2016) 通过光流指导的特征融合来获得更好的分割准确率。然而上述方法面临两个问题,一方面其往往使用现成的在其他数据集上训练的光流模型(FlowNet),导致了分割效率的降低;另一方面上述方法往往只利用了标准帧附近的少数帧,没有充分利用整个数据集和发挥光流的作用。


为了解决上述两个问题,作者提出了一个光流和语义分割联合学习的框架,语义分割为光流和遮挡估计提供了更丰富的语义信息,而非遮挡得光流保证了语义分割的像素级别的时序一致性。本文模型通过在视频中无监督学习光流并且使用光流对前后帧语义分割的特征图施加约束来使得两个任务互相增益并且没有显式的特征融合,这种隐式的约束可以帮助利用数据集中的全部数据并学到更鲁棒的分割特征以提高分割准确率,并且不会在测试阶段增加额外的计算量。



图二,本文提出的联合学习框架,输入图片经过共享编码器后分为两个分支,第一个是光流分支,第二个是分割分支。block 代表模型的特征图,灰色的虚线代表时序一致性约束,灰色实线代表遮挡估计模块。


时间一致性约束:


对于一对图片 I_i 和 I_{i+t},设其对应的分割特征图为 S,设学习到的光流为 F,遮挡 Mask 为 O,(S,F,O 均包含三个 block,如图所示),则两帧分割特征图可以通过光流 warp 进行转换:S_i^{warp}= Warp(S_{i+t}, F_{i->i+t})


考虑到遮挡的截断区域无法使用光流进行对齐,因此这些区域不计算损失。两帧的其他区域对应的分割特征图通过光流进行 warp 对齐后的一致性损失为第一帧的分割特征图和第二帧经过 warp 的分割特征图的非遮挡区域的 2 范数。


光流和遮挡估计:


文中所说的遮挡意味着两帧图片中光度的不一致性,它一般由图像中遮挡,截断(汽车离开相机拍摄)和移动目标导致,这里作者使用无监督的方式学习遮挡区域,通过反向光流推测出可能无法对齐的像素位置 O,模型根据此学习得到 O_{est};两帧的分割结果通过光流 warp 不一致的区域设为 O_{seg},O_{seg}应包括遮挡区域和光流估计错误的区域,因此 O_{error} = O_{seg}-O_{est}应为光流估计的重点区域。在计算光流估计的损失函数时,作者不考虑遮挡区域(O_{est})的损失,而加大重点区域(O_{error})的权重,遮挡估计的示意图如图 3 所示。



图 3,遮挡和遮挡估计示意图


语义分割的学习:


在训练时,作者从每个视频小段中随机选择 10 对图片来进行训练,其中五对包含标注帧,而另外五对均不包含标注帧。对于标注帧,直接使用监督的语义分割损失来进行学习;对于不包含标注帧的情况,通过两帧的一致性约束来对模型进行约束和学习。通过这种约束学习,标注信息可以从一帧传播到其他的未标注帧,而即使是两个未标注帧也可以通过一致性来学习。

实验结果

Cityscapes 数据集上的分割结果:



CamVid 数据集上的分割结果:



KITTI 数据集上的光流估计结果:



可视化结果:



图四,Cityscapes 验证集分割结果,从上至下分别为原图, 本文算法分割结果,PSPNet 分割结果和 GT。可以看出本文算法对移动目标(汽车,自行车)和出现频次较少目标(横向卡车)分割效果较好。



图五,KITTI 数据集上光流估计结果,从上至下分别为原图,本文算法估计结果,GeoNet 估计结果和 GT。可以看出本文算法对移动目标的边缘估计更为准确。


论文作者:Mingyu Ding, Zhe Wang, Bolei Zhou, Jianping Shi, Zhiwu Lu, Ping Luo


2020-02-16 12:003938

评论

发布
暂无评论
发现更多内容

保护Active Directory:备份和恢复的重要性及实施指南

运维有小邓

备份恢复 AD域 IT自动化运维

融云参与「全球首个运营商级量子加密办公应用」量子密信生态开放合作签约

融云 RongCloud

SD-WAN的常见使用案例

Ogcloud

SD-WAN 企业组网 SD-WAN组网 SD-WAN服务商 SDWAN

租用电商云手机的注意事项

Ogcloud

云手机 海外云手机 电商云手机 云手机群控

文献解读-Phenotypic expression and clinical outcomes in a South Asian PRKAG2 cardiomyopathy cohort

INSVAST

基因数据分析 多组学 生信分析 Sentieon 变异检测

阿里拿38K出来的大佬良心分享,熬夜整理10 万字详细Java面试笔记!

Summer

Java 编程 程序员 面试 架构师

淘宝月销API接口开发实战

联讯数据

Voice Agent 开发者必读,2024 最前沿语音模型梳理

声网

阿里P8精心整理MongoDB+RabbitMQ+Memcached面试题,100%拿offer

程序员高级码农

Java 编程 程序员 java面试 Java面试题

深度解析Spring AI:请求与响应机制的核心逻辑

不在线第一只蜗牛

Java spring

解密时序数据库的未来:TDengine Open Day技术沙龙精彩回顾

TDengine

数据库 tdengine

天润融通亮相CCFA论坛:AI Agent引领零售业服务精细化运营

天润融通

观测云采集云资源自定义标签最佳实践

观测云

云计算 云资源

凭借这份国内最新最全Java八股文(终极版),我成功入职字节T2-2

Summer

Java 编程 程序员 面试 架构师

TON链小游戏开发:探索GameFi链游技术的未来

区块链软件开发推广运营

交易所开发 dapp开发 链游开发 公链开发 代币开发

Solana VS 以太坊:基于数据、市场情绪和催化剂对比分析,Solana 能否实现逆袭?

区块链软件开发推广运营

交易所开发 dapp开发 链游开发 公链开发 代币开发

Taobao Agent Russia丨俄罗斯淘宝代购集运系统PHP搭建攻略

tbapi

淘宝代购系统 淘宝代购集运系统 俄语网站建设 俄语淘宝代购系统

天润融通助力味多美,AI技术驱动百年品牌服务升级

天润融通

数据可视化的发展趋势

inBuilder低代码平台

数据可视化

ArkUI与MVVM模式的诗和远方

威哥爱编程

HarmonyOS arkui ArkTS HarmonyOS框架 HarmonyOS NEXT

和鲸助力国防科技信息数据挖掘能力征集活动圆满落幕!

ModelWhale

Python 人工智能 大数据 R语言 国防科技

苹果电脑清理软件哪个好?专业的Mac系统维护工具推荐

阿拉灯神丁

性能优化 CleanMyMac X 清理优化 如何清理苹果电脑 mac系统维护软件

AI人工智能软件哪个好?30个办公常用的ai工具盘点!

职场工具箱

人工智能 AI 办公软件 AIGC AI生成PPT

AAAI 2020论文解读: 商汤科技发布新视频语义分割和光流联合学习算法_语言 & 开发_Mingyu Ding等_InfoQ精选文章