写点什么

关于要替代 TensorFlow 的 JAX,你知道多少?

  • 2019-02-12
  • 本文字数:3550 字

    阅读完需:约 12 分钟

关于要替代TensorFlow的JAX,你知道多少?

这个简短的教程将介绍关于 JAX 的基础知识。JAX 是一个 Python 库,它通过函数转换来增强 numpy 和 Python 代码,使运行机器学习程序中常见的操作轻而易举。具体来说,它会使得编写标准 Python / numpy 代码变得简单,并且能够立即执行


  • 通过 autograd 的后继计算函数的导数

  • 及时编译函数,通过 XLA 在加速器上高效运行

  • 自动矢量化函数,并执行处理“批量”数据等


在本教程中,我们将通过演示它在 AGI 的一个核心问题:使用神经网络学习异或(XOR)函数,依次介绍这些转换。


注意:此博客文章在此处提供交互式 Jupyter notebook:https://github.com/craffel/jax-tutorial

1 JAX 只是 numpy(大多数情况下)

从本质上讲,你可以将 JAX 视为使用执行上述转换所需的机器来增强 numpy。JAX 增强的 numpy 为 jax.numpy。除了少数例外,可以认为 jax.numpy 与 numpy 可直接互换。作为一般规则,当你计划使用 JAX 的任何转换(如计算渐变或即时编译代码),或希望代码在加速器上运行时,都应该使用 jax.numpy。当 jax.numpy 不支持你的计算时,用 numpy 就行了。


import randomimport itertools
import jaximport jax.numpy as np# Current convention is to import original numpy as "onp"import numpy as onp
from __future__ import print_function
复制代码

2 背景

如前所述,我们将使用小型神经网络学习 XOR 功能。 XOR 函数将两个二进制数作为输入并输出二进制数,如下图所示:



我们将使用具有 3 个神经元和双曲正切非线性的单个隐藏层的神经网络,通过随机梯度下降训练交叉熵损失。然后实现此模型和损失函数。请注意,代码与你在标准 numpy 中编写的完全一样。


# Sigmoid nonlinearitydef sigmoid(x):    return 1 / (1 + np.exp(-x))
# Computes our network's outputdef net(params, x): w1, b1, w2, b2 = params hidden = np.tanh(np.dot(w1, x) + b1) return sigmoid(np.dot(w2, hidden) + b2)
# Cross-entropy lossdef loss(params, x, y): out = net(params, x) cross_entropy = -y * np.log(out) - (1 - y)*np.log(1 - out) return cross_entropy
# Utility function for testing whether the net produces the correct# output for all possible inputsdef test_all_inputs(inputs, params): predictions = [int(net(params, inp) > 0.5) for inp in inputs] for inp, out in zip(inputs, predictions): print(inp, '->', out) return (predictions == [onp.bitwise_xor(*inp) for inp in inputs])
复制代码


如上所述,有些地方我们想要使用标准 numpy 而不是 jax.numpy。比如参数初始化。我们想在训练网络之前随机初始化参数,这不是我们需要衍生或编译的操作。JAX 使用自己的 jax.random 库而不是 numpy.random,为不同转换的复现性(种子)提供了更好的支持。由于我们不需要以任何方式转换参数的初始化,因此最简单的方法就是在这里使用标准


的 numpy.random 而不是 jax.random。


def initial_params():    return [        onp.random.randn(3, 2),  # w1        onp.random.randn(3),  # b1        onp.random.randn(3),  # w2        onp.random.randn(),  #b2    ]
复制代码

3 jax.grad

我们将使用的第一个转换是 jax.grad。jax.grad 接受一个函数并返回一个新函数,该函数计算原始函数的渐变。默认情况下,相对于第一个参数进行渐变;这可以通过 jgn.grad 的 argnums 参数来控制。要使用梯度下降,我们希望能够根据神经网络的参数计算损失函数的梯度。为此,使用 jax.grad(loss)就可以,它将提供一个可以调用以获得这些渐变的函数。


loss_grad = jax.grad(loss)
# Stochastic gradient descent learning ratelearning_rate = 1.# All possible inputsinputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
# Initialize parameters randomlyparams = initial_params()
for n in itertools.count(): # Grab a single random input x = inputs[onp.random.choice(inputs.shape[0])] # Compute the target output y = onp.bitwise_xor(*x) # Get the gradient of the loss for this input/output pair grads = loss_grad(params, x, y) # Update parameters via gradient descent params = [param - learning_rate * grad for param, grad in zip(params, grads)] # Every 100 iterations, check whether we've solved XOR if not n % 100: print('Iteration {}'.format(n)) if test_all_inputs(inputs, params): break
复制代码


4 jax.jit

虽然我们精心编写的 numpy 代码运行起来效果还行,但对于现代机器学习来说,我们希望这些代码运行得尽可能快。这一般通过在 GPU 或 TPU 等不同的“加速器”上运行代码来实现。JAX 提供了一个 JIT(即时)编译器,它采用标准的 Python / numpy 函数,经编译可以在加速器上高效运行。编译函数还可以避免 Python 解释器的开销,这决定了你是否使用加速器。总的来说,jax.jit 可以显著加速代码运行,且基本上没有编码开销,你需要做的就是让 JAX 为你编译函数。使用 jax.jit 时,即使是微小的神经网络也可以实现相当惊人的加速度:


# Time the original gradient function%timeit loss_grad(params, x, y)loss_grad = jax.jit(jax.grad(loss))# Run once to trigger JIT compilationloss_grad(params, x, y)%timeit loss_grad(params, x, y)
复制代码


10 loops, best of 3: 13.1 ms per loop


1000 loops, best of 3: 862 µs per loop


请注意,JAX 允许我们将变换链接在一起。首先,我们使用 jax.grad 获取了丢失的梯度,然后使用 jax.jit 立即进行编译。这是使 JAX 更强大的一个因素——除了链接 jax.jit 和 jax.grad 之外,我们还可以多次应用 jax.grad 以获得更高阶的导数等。为了确保训练神经网络经过编译后仍然有效,我们再次对它进行训练。请注意,训练代码没有任何变化。


params = initial_params()
for n in itertools.count(): x = inputs[onp.random.choice(inputs.shape[0])] y = onp.bitwise_xor(*x) grads = loss_grad(params, x, y) params = [param - learning_rate * grad for param, grad in zip(params, grads)] if not n % 100: print('Iteration {}'.format(n)) if test_all_inputs(inputs, params): break
复制代码


5 jax.vmap

精明的读者可能已经注意到,我们一直在一个例子上训练我们的神经网络。这是“真正的”随机梯度下降;在实践中,当训练现代机器学习模型时,我们执行“小批量”梯度下降,在梯度下降的每个步骤中,我们对一小批示例中的损失梯度求平均值。JAX 提供了 jax.vmap,这是一个自动“矢量化”函数的转换。这意味着它允许你在输入的某个轴上并行计算函数的输出。对我们来说,这意味着我们可以应用 jax.vmap 函数转换并立即获得损失函数渐变的版本,该版本适用于小批量示例。


jax.vmap 还可接受其他参数:


  • in_axes 是一个元组或整数,它告诉 JAX 函数参数应该对哪些轴并行化。元组应该与 vmap’d 函数的参数数量相同,或者只有一个参数时为整数。示例中,我们将使用(None,0,0),指“不在第一个参数(params)上并行化,并在第二个和第三个参数(x 和 y)的第一个(第零个)维度上并行化”。

  • out_axes 类似于 in_axes,除了它指定了函数输出的哪些轴并行化。我们在例子中使用 0,表示在函数唯一输出的第一个(第零个)维度上进行并行化(损失梯度)。


请注意,我们必须稍微修改一下训练代码——我们需要一次抓取一批数据而不是单个示例,并在应用它们来更新参数之前对批处理中的渐变求平均。


loss_grad = jax.jit(jax.vmap(jax.grad(loss), in_axes=(None, 0, 0), out_axes=0))
params = initial_params()
batch_size = 100
for n in itertools.count(): # Generate a batch of inputs x = inputs[onp.random.choice(inputs.shape[0], size=batch_size)] y = onp.bitwise_xor(x[:, 0], x[:, 1]) # The call to loss_grad remains the same! grads = loss_grad(params, x, y) # Note that we now need to average gradients over the batch params = [param - learning_rate * np.mean(grad, axis=0) for param, grad in zip(params, grads)] if not n % 100: print('Iteration {}'.format(n)) if test_all_inputs(inputs, params): break
复制代码


6 指南

这就是我们将在这个简短的教程中介绍的内容,但这实际上涵盖了大量的 JAX 知识。由于 JAX 主要是 numpy 和 Python,因此你可以利用现有知识,而不必学习基本的新框架或范例。


有关其他资源,请查看 JAX GitHub:


https://github.com/google/jax 上的 notebook 和示例目录。


2019-02-12 08:056329
用户头像

发布了 98 篇内容, 共 64.0 次阅读, 收获喜欢 285 次。

关注

评论

发布
暂无评论
发现更多内容

【JVM】关于JVM,你需要掌握这些 | 一文彻底吃透JVM系列

冰河

Java 性能优化 JVM Java虚拟机 系统编程

React-Hook最佳实践

xiaofeng

React

解密GaussDB(for Influx) :让智能电网中时序数据处理更高效

华为云开发者联盟

数据库 华为云 企业号十月 PK 榜

工作多年,技术认知不足,个人成长慢,职业发展迷茫,该怎么办?

测试人

软件测试 自动化测试 测试开发

Spring Boot 实现接口幂等性的 4 种方案

小小怪下士

Java spring springboot

【LeetCode】二叉树最大宽度Java题解

Albert

算法 LeetCode 11月月更

从 0 开始学 Python 自动化测试开发(二):环境搭建

霍格沃兹测试开发学社

更轻量的百度百舸,CCE Stack 智算版发布

Baidu AICLOUD

AI工程化 高性能计算 异构计算 百度百舸

4步消除漏洞积压

SEAL安全

漏洞修复 软件供应链安全 漏洞管理 11月月更

细说React组件性能优化

xiaofeng

React

技术分享 | 如何确保API 的稳定性与正确性?你只需要这一招

霍格沃兹测试开发学社

【愚公系列】2022年11月 微信小程序-日期时间组件封装

愚公搬代码

11月月更

工作多年,技术认知不足,个人成长慢,职业发展迷茫,该怎么办?

霍格沃兹测试开发学社

CnosDB 2.0 产品发布会预告:一切为了万物智联,用 Rust 打造云原生时序数据库

CnosDB

时序数据库 开源社区 CnosDB CnosDB 2.0发布会

新能源锂电池极片制造设备如何实现故障智能诊断?

PreMaint

智能诊断 故障诊断 新能源 设备健康管理

Istio Ambient Mesh七层服务治理图文详解

华为云开发者联盟

云原生 后端 华为云 企业号十月 PK 榜

华为云从入门到实战 | 云速建站服务与企业主机安全服务

TiAmo

华为 华为云 11月月更

读懂React原理之调和与Fiber

xiaofeng

React

网站停服、秒杀大促…解析高可用网站架构云化

华为云开发者联盟

云计算 后端 华为云 企业号十月 PK 榜

详解React的Transition工作原理原理

夏天的味道123

React

ironSource 与 Sensor Tower 宣布达成战略合作,共同拓展应用市场增长潜力

Geek_2d6073

这可能是你需要的React实战技巧

夏天的味道123

React

京东云开发者|经典同态加密算法Paillier解读 - 原理、实现和应用

京东科技开发者

联邦学习 同态加密 隐私计算 加密算法 多方安全计算

自学前端达到什么水平才能找到工作,来看这套前端学习路线图

千锋IT教育

CSS写一个圣诞树Chrome浏览器小插件

肥晨

11月月更 css写圣诞树 Chrome插件

校招面试真题 | 测试流程大概是什么?

霍格沃兹测试开发学社

JavaScript, ABAP 和 Scala 里的尾递归(Tail Recursion)

汪子熙

JavaScript 编程语言 尾递归 abap 11月月更

Java应用在docker环境配置容器健康检查

程序员欣宸

Java Docker 11月月更

修改ElementUI样式

源字节1号

软件开发 前端开发 后端开发 小程序开发

基于OpenHarmony L2设备,如何用IoTDeviceSDKTiny对接华为云

华为云开发者联盟

云计算 华为云 企业号十月 PK 榜

知识蒸馏相关技术【模型蒸馏、数据蒸馏】以ERNIE-Tiny为例

汀丶人工智能

nlp 知识蒸馏 11月月更

关于要替代TensorFlow的JAX,你知道多少?_AI&大模型_Colin Raffel_InfoQ精选文章