写点什么

一起学习朴素贝叶斯

  • 2019-11-27
  • 本文字数:3588 字

    阅读完需:约 12 分钟

一起学习朴素贝叶斯

最近小编也在开始学习一些机器学习方面的知识。所以就从朴素贝叶斯入手,给大家整理了一下相关的信息,供大家参考学习。

简介

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型。对于给定的输入 x,利用贝叶斯定理求出后验概率最大的输出 y,朴素贝叶斯法实现简单,学习与预测的效率都很高,是一种常用的方法。

人物介绍

贝叶斯,英国数学家.1701 年出生于伦敦,做过神甫.1742 年成为英国皇家学会会员.1763 年 4 月 7 日逝世.贝叶斯在数学方面主要研究概率论.他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763 年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用.贝叶斯的另一著作《机会的学说概论》发表于 1758 年.贝叶斯所采用的许多术语被沿用至今。 他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 – 摘自 360 百科

算法原理

  • 条件概率公式

  • 全概率公式

  • 特征条件独立假设

1 条件概率公式

条件概率是指事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为:P(A|B),读作“在 B 条件下 A 的概率”。若只有两个事件 A,B,那么:


P(A|B) = P(AB)/P(B)P(B|A) = P(AB)/P(A)所以:P(A|B) = P(B|A) * P(A) / P(B)
复制代码

2 全概率公式

如果事件 A1、A2、A3…An 构成一个完备事件组,即它们两两互不相容,其和为全集;并且 P(Ai)大于 0,则对任一事件 B 有:


P(B) = P(A1B) + P(A1B) + ··· + P(AnB)     = ∑P(AiB)     = ∑P(B|Ai) * P(Ai) ·······················(i=1,2,····,n)
复制代码

3 贝叶斯公式

将全概率公式带入到条件概率公式当中,对于事件 Ak 和事件 B 有:


P(Ak|B) = [ P(Ak) * P(B|Ak) ] / ∑P(B|Ai) * P(Ai) ·········(i=1,2,····,n)
复制代码


对于 P(Ak|B)来说,分子 ∑P(B|Ai)*P(Ai) 为一个固定值,因为我们只需要比较 P(Ak|B)的大小,所以可以将分母固定值去掉,并不会影响结果。因此,可以得到下面公式:


P(Ak|B) = P(Ak) * P(B|Ak)
复制代码


P(Ak) 先验概率,P(Ak|B) 后验概率,P(B|Ak) 似然函数

4 特征条件独立假设

在分类问题中,常常需要把一个事物分到某个类别中。一个事物又有许多属性,即 x=(x1,x2,···,xn)。常常类别也是多个,即 y=(y1,y2,···,yk)。P(y1|x),P(y2|x),…,P(yk|x),表示 x 属于某个分类的概率,那么,我们需要找出其中最大的那个概率 P(yk|x)。


根据上一步得到的公式可得:P(yk|x) =P(yk) * P(x|yk)

样本 x 有 n 个属性:x=(x1,x2,···,xn),所以:P(yk|X) =P(yk) * P(x1,x2,···,xn|yk)

条件独立假设,就是各条件之间互不影响,所以:P(x1,x2,···,xn|yk) = ∏P(xi|yk) 最终公式为:P(yk|x) =P(yk) * ∏P(xi|yk)

根据公式 P(yk|x) =P(yk) * ∏P(xi|yk) ,就可以做分类问题了。

拉普拉斯平滑

引入这个概率的意义,公式 P(yk|x) =P(yk) * ∏P(xi|yk),是一个多项乘法公式,其中有一项数值为 0,则整个公式就为 0,显然不合理,避免每一项为零的做法就是,在分子、分母上各加一个数值。


P(y) = (|Dy| + 1) / (|D| + N)

参数说明:|Dy|表示分类 y 的样本数,|D|样本总数。

P(xi|Dy) = (|Dy,xi| + 1) / (|Dy| + Ni)

参数说明:|Dy,xi|表示分类 y 属性 i 的样本数,|Dy|表示分类 y 的样本数,Ni 表示 i 属性的可能的取值数。

文本分类

手动实现邮件分类

首先要对所有的已标记的邮件进行分词,整理得到每封邮件分词向量和全分词向量


根据邮件向量可以得到每个词在正常邮件中出现的概率(∏P(wi|Normal))及垃圾邮件中出现的概率(∏P(wi|Spam))


垃圾邮件的概率:P(spam)

正常邮件的概率:P(normal)

邮件是垃圾邮件的概率:

P(Spam|mail) = P(Spam) * ∏P(wi|Spam)

邮件是正常邮件的概率:

P(Normal|mail) = P(Normal) * ∏P(wi|Normal)


最后比较 P(Spam|mail) 与 P(Normal|mail) 的大小就可以了。

使用 sklearn 实现文本分类

# sklearn 实现文本分类import osimport random from numpy import *from numpy.ma import arangefrom sklearn.pipeline import Pipeline# TfidfVectorizer 文本特征提取(根据词出现的频率及在语句中的重要性)# HashingVectorizer 文本的特征哈希# CountVectorizer 将文本转换为每个词出现的个数的向量
from sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import BernoulliNBfrom sklearn.naive_bayes import MultinomialNBimport matplotlib.pyplot as plt
# 获取样本集def get_dataset(): data = [] for root, dirs, files in os.walk(r'./mix20_rand700_tokens_cleaned/tokens/neg'): for file in files: realpath = os.path.join(root, file) with open(realpath, errors='ignore') as f: data.append((f.read(), 'bad')) for root, dirs, files in os.walk(r'./mix20_rand700_tokens_cleaned/tokens/pos'): for file in files: realpath = os.path.join(root, file) with open(realpath, errors='ignore') as f: data.append((f.read(), 'good')) random.shuffle(data) return data # 处理训练集与测试集
def train_and_test_data(data_): # 训练集和测试集的比例为7:3 filesize = int(0.7 * len(data_)) # 训练集 train_data_ = [each[0] for each in data_[:filesize]] train_target_ = [each[1] for each in data_[:filesize]] # 测试集 test_data_ = [each[0] for each in data_[filesize:]] test_target_ = [each[1] for each in data_[filesize:]] return train_data_, train_target_, test_data_, test_target_ """多项式模型:在多项式模型中, 设某文档d=(t1,t2,…,tk),tk是该文档中出现过的单词,允许重复,则先验概率P(c)= 类c下单词总数/整个训练样本的单词总数类条件概率P(tk|c)=(类c下单词tk在各个文档中出现过的次数之和+1)/(类c下单词总数+|V|)V是训练样本的单词表(即抽取单词,单词出现多次,只算一个),|V|则表示训练样本包含多少种单词。 P(tk|c)可以看作是单词tk在证明d属于类c上提供了多大的证据,而P(c)则可以认为是类别c在整体上占多大比例(有多大可能性)。"""def mnb(train_da, train_tar, test_da, test_tar): nbc = Pipeline([ ('vect', TfidfVectorizer()), ('clf', MultinomialNB(alpha=1.0)), ]) nbc.fit(train_da, train_tar) # 训练我们的多项式模型贝叶斯分类器 predict = nbc.predict(test_da) # 在测试集上预测结果 count = 0 # 统计预测正确的结果个数 for left, right in zip(predict, test_tar): if left == right: count += 1 # print("多项式模型:", count / len(test_target)) return count / len(test_tar)
"""伯努利模型:P(c)= 类c下文件总数/整个训练样本的文件总数P(tk|c)=(类c下包含单词tk的文件数+1)/(类c下单词总数+2)"""def bnb(train_da, train_tar, test_da, test_tar): nbc_1 = Pipeline([ ('vect', TfidfVectorizer()), ('clf', BernoulliNB(alpha=1.0)), ]) nbc_1.fit(train_da, train_tar) # 训练我们的多项式模型贝叶斯分类器 predict = nbc_1.predict(test_da) # 在测试集上预测结果
count = 0 # 统计预测正确的结果个数 for left, right in zip(predict, test_tar): if left == right: count += 1 # print("伯努利模型:", count / len(test_target)) return count / len(test_tar)
# 训练十次x = arange(10)y1 = []y2 = []for i in x: print(i) data = get_dataset() train_data, train_target, test_data, test_target = train_and_test_data(data) y1.append(mnb(train_data, train_target, test_data, test_target)) y2.append(bnb(train_data, train_target, test_data, test_target))
print(x)print(y1)print(y2)
plt.plot(x, y1, lw='2', label='MultinomialNB')plt.plot(x, y2, lw='2', label='BernoulliNB')plt.legend(loc="upper right")plt.ylim(0, 1)plt.grid(True)plt.show()
复制代码


sklearn 结果对比


总结

Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一。Sklearn 把所有机器学习的模式整合统一起来了,学会了一个模式就可以通吃其他不同类型的学习模式。


本文转载自公众号 360 云计算(ID:hulktalk)。


原文链接:


https://mp.weixin.qq.com/s/maY1fp341KpJ3mMF1vefJQ


2019-11-27 10:29944

评论

发布
暂无评论
发现更多内容

Ubuntu 安装 NTP 服务

HoneyMoose

拥抱数字娱乐家庭新生态,亚马逊云科技赋能智象“蛟龙出海” | 精选案例

亚马逊云科技 (Amazon Web Services)

Jenkins 控制台输出中的奇怪字符

HoneyMoose

SpringCloud Gateway 路由断言

中原银行

函数式接口 reactor SpringCloud Gateway

redis面试知识点和内存算法了解

星环科技边缘计算平台Sophon Edge通过EC Ready边缘服务权威评测!

星环科技

NeoFetch - Linux 使用命令行查看系统信息

HoneyMoose

【Jetpack篇】协程+Retrofit网络请求状态封装实战(2)

付十一

Android进阶 JetPack

什么是网络流量劫持?

网络安全学海

网络安全 安全 渗透测试 安全漏洞 网络攻防

重磅!北京区域已经推出第三个可用区啦

亚马逊云科技 (Amazon Web Services)

平安社区建设解决方案.智慧小区平台系统建设

用Python手动实现LRU算法

IT蜗壳-Tango

6月日更 算法训练营 算法训练营2021第0期

企微私域经营

soho

JAVA原生线程池源码解析及使用建议( 程序员必看!)

Java 面试 BAT

模型化生存

俞凡

认知

源中瑞区块链BaaS平台为企业一键部署区块链应用

13530558032

Swarm云算力矿机分币系统搭建,chia矿机系统源码

经典Android开发教程!腾讯T3团队整理,附小技巧

欢喜学安卓

android 程序员 面试 移动开发

区块链创新食品溯源--让舌尖上的安全看的见

13530558032

四份深入源码层面笔记,学完后让你彻底精通Spring Cloud!

Java架构追梦

Java 架构 面试 微服务 SpringCloud

软件工程师的10个认知模型

俞凡

认知

建信金科大咖访谈:人工智能技术应用与展望

金科优源汇

Linux学习经验分享:搞定这六点,Linux命令So easy!

学无止境的阿奔

Linux 分布式 运维 C/C++

亚马逊云科技宣布Amazon WAF 在北京区域和宁夏区域正式上线

亚马逊云科技 (Amazon Web Services)

【Jetpack篇】协程+Retrofit网络请求状态封装实战

付十一

Android进阶 JetPack

网络攻防学习笔记 Day56

穿过生命散发芬芳

网络攻防 6月日更

收藏!阿里P9耗时28天,总结出来了“618、双十一”活动高并发系统设计手册

Java 程序员 架构 面试 高并发

什么是NQI?质量基础设施“一站式”服务平台我来帮你搭建

源中瑞-龙先生

NQI 质量基础设施“一站式”

前端工程化的思考

金科优源汇

TDH8.0使用必读2: 10种数据模型全支持 未来属于多模型大数据平台

星环科技

肝到头秃!阿里爆款的顶配版Spring Security笔记

Java 程序员 架构 面试 计算机

一起学习朴素贝叶斯_文化 & 方法_翟存启_InfoQ精选文章