写点什么

谷歌提出新方法:基于单目视频的无监督深度学习结构化

  • 2018-12-03
  • 本文字数:2684 字

    阅读完需:约 9 分钟

谷歌提出新方法:基于单目视频的无监督深度学习结构化

AI 前线导读:近日,谷歌大脑团队提出一种结构化方法从单目视频中进行无监督学习,获得了较高质量的场景深度和自运动预测。同时,结合在线学习算法,该方法可以进行跨域迁移,在与训练数据库差距较大的数据库上获得可观的表现。


感知场景的深度是自主机器人的一项重要任务:准确估计物体离机器人的距离的能力对于躲避障碍、安全规划和导航至关重要。虽然可以从传感器数据(例如LIDAR)中获得(和学习)深度,但是也可以用无监督的方式从单目相机中学习场景深度,这取决于机器人的运动以及由此产生的场景的不同视图。这种方式还学习了“自运动(egomotion)”(机器人或摄像机在两帧之间的运动),同时提供了机器人自身的定位。虽然这种方法具有较长的历史(运动结构和多视图几何学),但是新的基于学习的技术,具体来说是通过深层神经网络对场景深度和自运动的无监督学习,已经推进了该领域技术的发展。其中包括 Zhou 等人的工作(Unsupervised Learning of Depth and Ego-Motion from Video),以及我们之前在训练中对场景的 3D 点云进行对齐的研究(Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos)。


尽管目前已经有这些成果,学习预测场景深度和自运动仍然是一个持续的挑战,尤其是在处理高动态的场景和估计运动物体的深度情况下。由于以往对无监督单目学习的研究没有对运动对象进行建模,因此会导致对对象深度的连续错误估计,常常会将其深度映射到无穷大。


在我们发表在AAAI-2019的论文 Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos (无传感器深度预测:利用结构信息完成基于单目视频的无监督学习)中,我们提出了一种新的方法,它能够对运动对象进行建模,并且给出高质量的场景深度估计结果。与其它单目视频的无监督学习方法相比,我们的方法能够恢复运动物体的正确场景深度。在本文中,我们还提出了一种无缝的在线优化技术,可以进一步提高质量,并应用于跨数据集的迁移。此外,为了鼓励大家提出更好的机载机器人学习方法,我们开源了论文的TensorFlow代码


图1 之前的工作(中间行)不能正确估计运动目标,而把他们的深度映射为无限远(热度图中深蓝色部分)。而我们的方法则提供了更好的深度估计。


图 1 之前的工作(中间行)不能正确估计运动目标,而把他们的深度映射为无限远(热度图中深蓝色部分)。而我们的方法则提供了更好的深度估计。

结构

我们方法的一个关键思想是在学习框架中引入结构信息。也就是说,我们不是直接依靠神经网络来学习场景深度,而是将单目场景看作由移动物体(包括机器人本身)组成的 3D 场景。我们将各个运动建模为场景中的独立变换——旋转和平移,然后将其用于建模 3D 几何并估计所有物体的运动。此外,知道哪些对象有潜在可能会移动(例如,汽车、人、自行车等)能够帮助我们学习它们单独的运动矢量,即使它们可能是静态的。通过将场景分解为 3D 和单独的对象,可以更好地学习场景中的深度和自运动,尤其是在高度动态的场景中。


我们在KITTICITYSCAPE城市驾驶数据集上测试了该方法。我们发现它的表现优于目前最先进的方法,并且与使用立体成对视频作为监督的方法的表现接近。重要的是,我们能够正确地恢复与自运动车辆速度相同的汽车的场景深度。这在以前是相当具有挑战性的,在这种情况下,移动车辆(单目输入)呈现静态,表现出与静止的地平线相同的行为,导致算法将其推断为无限深度。虽然立体视频输入可以解决这一问题,但是我们首次提出了能够从单目输入中进行正确推断的方法。


图2 之前用单目视频作为输入的工作不能提取运动物体,并且错误地将它们映射到无限深度。


图 2 之前用单目视频作为输入的工作不能提取运动物体,并且错误地将它们映射到无限深度。


此外,由于在我们的方法中对象是单独处理的,所以该算法能够为每个对象提供单独的运动矢量,即对它运动方向的估计:



图 3 动态场景下深度估计结果与独立车辆的移动矢量估计示例


除了上述结果,这项研究还证明了进一步探索无监督学习方法所具有的潜力,因为单目输入比立体或 LIDAR 传感器更便宜,更容易部署。如下图所示,在 KITTI 和 Cityscapes 数据集中,监控传感器(无论是立体还是 LIDAR)都有丢失值,并且有时可能由于时间延迟无法与相机输入对准。


图4 KITTI数据集单目视频深度预测(中间行),与Lidar传感器的真实值对比,后者没有覆盖全部场景,并且有丢失值和噪声值。真实深度值在训练中没有使用。


图 4 KITTI 数据集单目视频深度预测(中间行),与 Lidar 传感器的真实值对比,后者没有覆盖全部场景,并且有丢失值和噪声值。真实深度值在训练中没有使用。


图5 Cityscapes数据集的深度预测结果。从左到右分别是:图像、基线、我们的方法和立体视频提供的真实值。请注意立体真实值中的丢失值。而且我们的算法能在没有任何真实值深度信息的监督的情况下达到这样的效果。


图 5 Cityscapes 数据集的深度预测结果。从左到右分别是:图像、基线、我们的方法和立体视频提供的真实值。请注意立体真实值中的丢失值。而且我们的算法能在没有任何真实值深度信息的监督的情况下达到这样的效果。

自运动

我们的结果还提供了最先进的自运动估计,这对于自主机器人来说至关重要,因为它提供了机器人在场景中移动时的定位。下面的视频(由于微信限制,此处动图无法上传,可以查阅原文看原图)给出了我们方法的结果,我们对推断的自运动中获得的速度和转角进行了可视化。虽然深度和自运动的输出是标量,我们可以看到,当减速或停止时,它能够估计它的相对速度。


图6 深度和自运动预测。从速度和转角指示中可以看出车辆转弯和红灯停下时的估计值。


图 6 深度和自运动预测。从速度和转角指示中可以看出车辆转弯和红灯停下时的估计值。

跨域迁移

学习算法的一个重要特征是移动到未知环境时的适应性。在该工作中,我们进一步介绍了在线优化方法,该方法在收集新数据的同时继续进行在线学习。以下是在 Cityscape 上训练,然后在 KITTI 上进行在线优化之后,估计深度质量提升的示例。


7 在线优化效果示意图。在Cityscapes数据集上进行训练,而在KITTI数据集上进行测试。图像显示了训练模型和经过在线优化的训练模型给出的深度预测。经过在线优化的模型能够更好地描绘场景中目标的轮廓。


图 7 在线优化效果示意图。在 Cityscapes 数据集上进行训练,而在 KITTI 数据集上进行测试。图像显示了训练模型和经过在线优化的训练模型给出的深度预测。经过在线优化的模型能够更好地描绘场景中目标的轮廓。


我们进一步在与训练集有很大不同的数据集上测试,即在由Fetch机器人收集的室内数据集上测试,而训练是在室外城市驾驶 Cityscape 数据集上进行的。这些数据集之间存在很大的差异。即使如此,我们发现在线学习技术能够获得比基线更好的深度估计。


图8 在线自适应的结果:当模型从Cityscapes(室外驾驶数据集)迁移到由Fetch机器人收集的室内数据。最底行显示了应用在线优化后深度预测结果的提升。


图 8 在线自适应的结果:当模型从 Cityscapes(室外驾驶数据集)迁移到由 Fetch 机器人收集的室内数据。最底行显示了应用在线优化后深度预测结果的提升。


综上所述,这项工作致力于从单目相机中进行场景深度和自运动的无监督学习,并解决高度动态场景中的问题。结果显示,该方法获得了高质量的场景深度和自运动预测结果,与立体视频有类似的表现。并且我们提出了在学习过程中结合结构的思想。


更值得注意的是,我们提出的仅从单目视频中无监督学习场景深度和自运动预测与在线适应结合寓示了一个强大的想法,因为它不仅能够以无监督的方式从简单的视频中学习,而且还可以非常容易地迁移到其他数据集上。


查看英文原文:A Structured Approach to Unsupervised Depth Learning from Monocular Videos



2018-12-03 17:282092

评论 2 条评论

发布
用户头像
视频
2018-12-03 19:48
回复
没有更多了
发现更多内容

Web 键盘输入法应用开发指南(1) —— 基本概念

天择

JavaScript 键盘 输入法

数字化赋能三农 农行、邮储如何保“质”更保“智”?

CECBC

利用wvs扫描网站发现一个页面,暴露了错误信息

喀拉峻

网络安全

墨天轮国产数据库沙龙 | 张玮绚:TDengine,高性能、分布式、支持SQL的时序数据库

墨天轮

数据库 tdengine 国产数据库

亚信科技AntDB与华为鲲鹏完成产品互认证

亚信AntDB数据库

AntDB 华为鲲鹏

5G时代的海洋之歌

脑极体

RMI、JNDI、LDAP介绍+log4j漏洞分析

H

Java 网络安全

TiDB Hackathon 2021 — pCloud : 做数据库上的 iCloud丨pCloud 团队访谈

PingCAP

数据库

免费get | 版本控制软件全功能版

龙智—DevSecOps解决方案

perforce Perforce Helix Core 版本控制软件

元宇宙房地产演绎新“美国梦”

CECBC

Guitar Pro教程之如何设置MIDI键盘

懒得勤快

【C语言】判断语句以及分支语句《详细讲解》

謓泽

C语言 2月月更

电动汽车行业蓬勃发展,是时候关注电动汽车软件了

龙智—DevSecOps解决方案

电动汽车 电动汽车市场 电动汽车软件

IM全文检索技术专题(四):微信iOS端的最新全文检索技术优化实践

JackJiang

全文检索 微信 IM 即时通讯IM

火山引擎举办视频云科技原力峰会,发布面向体验的全新视频云产品矩阵

字节跳动视频云技术团队

音视频

网络标准之:IANA定义的传输编码

程序那些事

Java 网络协议 nio 程序那些事 2月月更

华为在MWC2022为全球开发者带来HMS创新工具,全面提升消费者体验

最新动态

虎符交易所2022年首届交易大赛 最高瓜分5万USDT奖励

区块链前沿News

虎符交易所

动态规划习题(1)-个人分析

netbanner

开年上云,寻找“好云”推荐官——千元大奖等你赢

阿里云弹性计算

征文活动 玩转ECS

2021年证券应用活跃度高速提升,用户粘性进一步释放

易观分析

证券市场

北纬科技三步走完成DevOps转型

阿里云云效

云计算 阿里云 DevOps 云原生 #运维

物联网平台的基础概念

dgiot

Nebula 在 Akulaku 智能风控的实践:图模型的训练与部署

NebulaGraph

图数据库 知识图谱 图数据库实战

合规性管理101:流程、规划和挑战

龙智—DevSecOps解决方案

合规性 合规性管理

加密货币使得俄罗斯更容易规避制裁

CECBC

比5G还快10倍,你准备好迎接万兆通信了吗?

脑极体

Jira组织架构管理哪家强?

龙智—DevSecOps解决方案

Jira组织架构管理 Jira组织架构 Jira插件

详探 Apache ShardingSphere SQL Parse Format 功能

SphereEx

数据库 sql ShardingSphere SphereEx

学习黑客十余年,如何成为一名安全工程师?

网络安全学海

黑客 网络安全 信息安全 渗透测试 WEB安全

杭州AI开发者Meetup报名开启!

百度大脑

谷歌提出新方法:基于单目视频的无监督深度学习结构化_AI&大模型_Anelia Angelova_InfoQ精选文章