写点什么

前端进阶: 总结几个常用的 JS 搜索算法和性能对比

  • 2020-12-07
  • 本文字数:2532 字

    阅读完需:约 8 分钟

前端进阶: 总结几个常用的 JS 搜索算法和性能对比

前言


今天让我们来继续聊一聊 JS 算法,通过接下来的讲解,我们可以了解到搜索算法的基本实现以及各种实现方法的性能,进而发现 for 循环,forEach,While 的性能差异,我们还会了解到如何通过 Web Worker 做算法分片,极大的提高算法的性能。


同时我还会简单介绍一下经典的二分算法哈希表查找算法,但这些不是本章的重点,之后我会推出相应的文章详细介绍这些高级算法,感兴趣的朋友可以关注我的专栏,或一起探讨。


对于算法性能,我们还是会采用上一章 《前端算法系列》如何让前端代码速度提高60倍 中的 getFnRunTime 函数,大家感兴趣的可以查看学习,这里我就不做过多说明。


在上一章 《前端算法系列》如何让前端代码速度提高60倍 我们模拟了 19000 条数据,这章中为了让效果更明显,我将伪造 170 万条数据来测试,不过相信我,对 js 来说这不算啥。。。


1. for 循环搜索


基本思路:通过 for 循环遍历数组,找出要搜索的值在数组中的索引,并将其推进新数组


代码实现如下:


const getFnRunTime = require('./getRuntime');
/** * 普通算法-for循环版 * @param {*} arr * 耗时:7-9ms */ function searchBy(arr, value) { let result = []; for(let i = 0, len = arr.length; i < len; i++) { if(arr[i] === value) { result.push(i); } } return result } getFnRunTime(searchBy, 6)
复制代码


测试 n 次稳定后的结果如图:



2. forEach 循环


基本思路和 for 循环类似:


/**  * 普通算法-forEach循环版  * @param {*} arr   * 耗时:21-24ms  */ function searchByForEach(arr, value) {    let result = [];    arr.forEach((item,i) => {        if(item === value) {            result.push(i);        }    })   return result}
复制代码


耗时 21-24 毫秒,可见性能不如 for 循环(先暂且这么说哈,本质也是如此)。


3. while 循环


代码如下:


/**  * 普通算法-while循环版  * @param {*} arr   * 耗时:11ms  */ function searchByWhile(arr, value) {     let i = arr.length,     result = [];    while(i) {        if(arr[i] === value) {            result.push(i);        }        i--;    }       return result}
复制代码


可见 while 和 for 循环性能差不多,都很优秀,但也不是说 forEach 性能就不好,就不使用了。forEach 相对于 for 循环,代码减少了,但是 forEach 依赖 Enumerable。在运行时效率低于 for 循环。但是在处理不确定循环次数的循环,或者循环次数需要计算的情况下,使用 forEach 比较方便。而且 forEach 的代码经过编译系统的代码优化后,和 for 循环的循环类似。


4. 二分法搜索


二分法搜索更多的应用场景在数组中值唯一并且有序的数组中,这里就不比较它和 for/while/forEach 的性能了。


基本思路:从序列的中间位置开始比较,如果当前位置值等于要搜索的值,则查找成功;若要搜索的值小于当前位置值,则在数列的前半段中查找;若要搜索的值大于当前位置值则在数列的后半段中继续查找,直到找到为止


代码如下:


/**   * 二分算法   * @param {*} arr    * @param {*} value    */  function binarySearch(arr, value) {    let min = 0;    let max = arr.length - 1;        while (min <= max) {      const mid = Math.floor((min + max) / 2);        if (arr[mid] === value) {        return mid;      } else if (arr[mid] > value) {        max = mid - 1;      } else {        min = mid + 1;      }    }      return 'Not Found';  }
复制代码


在数据量很大的场景下,二分法效率很高,但不稳定,这也是其在大数据查询下的一点小小的劣势。


5. 哈希表查找


哈希表查找又叫散列表查找,通过查找关键字不需要比较就可以获得需要记录的存储位置,它是通过在记录的存储位置和它的关键字之间建立一个确定的对应关系 f,使得每个关键字 key 对应一个存储位置 f(key)


哈希表查找的使用场景:


  • 哈希表最适合的求解问题是查找与给定值相等的记录

  • 哈希查找不适合同样的关键字对应多条记录的情况

  • 不适合范围查找,比如查找年龄 18~22 岁的同学


在这我先给出一个最简版的 hashTable,方便大家更容易的理解哈希散列:


/** * 散列表 * 以下方法会出现数据覆盖的问题 */function HashTable() {  var table = [];
// 散列函数 var loseloseHashCode = function(key) { var hash = 0; for(var i=0; i<key.length; i++) { hash += key.charCodeAt(i); } return hash % 37 };
// put this.put = function(key, value) { var position = loseloseHashCode(key); table[position] = value; }
// get this.get = function(key) { return table[loseloseHashCode(key)] }
// remove this.remove = function(key) { table[loseloseHashCode(key)] = undefined; }}
复制代码


该方法可能会出现数据冲突的问题,不过也有解决方案,由于这里涉及的知识点比较多,后期我会专门推出一篇文章来介绍:


  • 开放定址法

  • 二次探测法

  • 随机探测法


使用 Web Worker 优化


通过以上的方法,我们已经知道各种算法的性能和应用场景了,我们在使用算法时,还可以通过 Web Worker 来优化,让程序并行处理,比如将一个大块数组拆分成多块,让 Web Worker 线程帮我们去处理计算结果,最后将结果合并,通过 Worker 的事件机制传给浏览器,效果十分显著。


总结


  1. 对于复杂数组查询,for/while 性能高于 forEach 等数组方法

  2. 二分查找法的 O(logn) 是一种十分高效的算法。不过它的缺陷也很明显:必须有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组。数组读取效率是 O(1),可是它的插入和删除某个元素的效率却是 O(n)。因而导致构建有序数组的时候会降低效率。

  3. 哈希表查找的基本用法及使用场景。

  4. 条件允许的话,我们可以用 Web Worker 来优化算法,让其在后台并行执行。


好啦,这篇文章虽然比较简单,但十分重要,希望大家对搜索算法有更加直观的认识,也希望大家有更好的方法,一起探讨交流。



作者:徐小夕,未经授权不可转载。

原文链接前端进阶: 总结几个常用的js搜索算法和性能对比

2020-12-07 13:474391

评论

发布
暂无评论
发现更多内容

一周信创舆情观察(7.12~7.18)

统小信uos

抖音快手短视频获客软件开发系统

从 Web 图标演进历史看最佳实践

百度Geek说

大前端

又一数据库高危漏洞爆出,数据安全如何有效保障?

华为云开发者联盟

redis 漏洞 GaussDB(for Redis) 开源Redis 数据库安全

上架一夜遭全网封杀!阿里大牛熬夜半年手码的Java面试指南太强了

白亦杨

Java 编程 程序员 架构师

解决智慧城市发展困扰:Web3D智慧环卫GIS系统

一只数据鲸鱼

GIS 数据可视化 智慧城市 智慧环卫

哪类技术助力了隐私计算的工业化?如何“组装”发挥更大价值?

记一次真实的JVM性能调优过程

北游学Java

Java JVM 性能调优

数字人民币如何普惠百姓?建行发布新金融数字便民计划

CECBC

技术解码 | 腾讯云SRT弱网优化

腾讯云音视频

细节分析Linux中五种IO模型和三种实现方式

Linux服务器开发

网络编程 epoll Linux服务器开发 Linux后台开发 IO模型

百度AI寻人获评《新周刊》2021年度公益项目

百度大脑

人工智能 寻人

应届女生美团Java岗4面,一次性斩offfer,我受到了万点暴击

Java 编程 程序员 架构师 计算机

Chaos Mesh 助力 Apache APISIX 提升稳定性

API7.ai 技术团队

lua 网关 APISIX Chaos Mesh

棒极了!可以让你Java程序快上180%以上的阿里性能优化笔记

Java架构追梦

Java 阿里巴巴 架构 面试 性能优化

还在使用NoSQL数据库?为IoT选择TSDB

数据库 大数据 时序数据库 tsdb 数据智能

存储大师班 | NFS 的诞生与成长

QingStor分布式存储

分布式存储 分布式文件存储 NAS NFS

Jar 组件自动化风险监测和升级实践

Qunar技术沙龙

安全 风险管理

13张图,深入理解Synchronized

程序猿阿星

synchronized java 并发 锁机制 锁升级

利用亚马逊云科技Direct Connect和Transit Gateway轻松构造企业混合云解决方案

亚马逊云科技 (Amazon Web Services)

丰富 TF Serving 生态,爱奇艺开源灵活高性能的推理系统 XGBoost Serving

爱奇艺技术产品团队

开源 优化 tensorflow serving 推理

kafka日志存储以及清理机制

泽睿

kafak

揭秘Hologres如何支持超高QPS在线服务(点查)场景

阿里云大数据AI技术

Go语言:new还是make?到底该如何选择?

微客鸟窝

Go 语言

网络研讨会|为什么在开发流程中应用静态代码分析工具?

鉴释

在线研讨会 静态代码分析

带你了解WDR-GaussDB(DWS) 的性能监测报告

华为云开发者联盟

数据库 数据 GaussDB(DWS) WDR 负荷诊断报告

Cassandra的调优总结

林一

分布式数据库 Cassandra

区块链不是一个风口,而是一个时代

CECBC

多鲸资本发布《2021教育实时音视频行业报告》:拍乐云以质取胜做行业引领者

拍乐云Pano

Java的这个强大功能,很多人都不知道

华为云开发者联盟

Java c++ jdk 算法 jni

SaaS市场百花齐放:厂商数量已达4500家,用户数量已达915万家

海比研究院

前端进阶: 总结几个常用的 JS 搜索算法和性能对比_大前端_徐小夕_InfoQ精选文章