写点什么

Facebook 强一致性键值存储 ZippyDB 架构简介

  • 2021-10-11
  • 本文字数:1684 字

    阅读完需:约 6 分钟

Facebook强一致性键值存储ZippyDB架构简介

Facebook 工程团队最近发布了一篇博客文章,阐述了如何构建其通用的键值存储的,也就是 ZippyDB。ZippyDB 是 Facebook 最大的键值存储,已经投入生产环境超过了六年的时间。它为应用程序在各个方面提供了灵活性,包括可调整的持久性、一致性、可用性以及低延迟保证等方面。ZippyDB 的使用场景包括分布式文件系统的元数据、用于内部和外部目的的事件计数,以及用于各种应用特性的产品数据。


Facebook 的软件工程师 Sarang Masti 对创建 ZippyDB 的动机进行了深入分析:


ZippyDB 使用RocksDB作为底层的存储引擎。在 ZippyDB 之前,Facebook 的各个团队都直接使用 RocksDB 来管理他们的数据。这导致每个团队在解决类似的挑战时造成了工作的重复,比如一致性、容错、故障恢复、副本以及容量管理等。为了解决这些不同团队的需求,我们创建了 ZippyDB,以提供一个高度持久化和一致性的键值数据存储,通过将所有的数据转移到 ZippyDB 上并解决管理这种数据相关的挑战,大大提升了产品开发的速度。


一个 ZippyDB 部署(叫做“tier”)由分布到全世界范围多个区域(region)的计算和存储资源组成。每个部署都以多租户的方式托管多个用例。ZippyDB 会将属于某个用例的数据划分为分片(shard)。根据配置,它会跨多个区域为每个分片创建副本,从而实现容错性,这个过程可以使用Paxos或异步副本来实现。



图片来源:https://engineering.fb.com/2021/08/06/core-data/zippydb/


每个分片副本的子集都是某个quorum组的一部分,在这里数据会被同步复制,从而能够在出现故障的时候提供高持久性和可用性。如果以 follower 的形式配置了其他副本的话,将会采用异步复制的方式。Follower 能够让应用程序拥有多个区域内的副本以支持宽松一致性的低延迟读取,同时能够保持较小的 quorum 大小以实现更低的写入延迟。这种分片内副本角色配置的灵活性能够让应用程序根据自身的需要平衡持久性、写入的性能和读取的性能。


ZippyDB 为应用程序提供了可配置的一致性和持久性等级,它们可以在读取和写入 API 中以可选项的形式进行指定。对于写入来讲,ZippyDB 默认会将数据持久化到大多数副本的 Paxos 的日志中并将数据写入到主 RocksDB 上。这样的话,对于主节点的读取能够始终看到最新的写入。除此之外,它还支持一个更低延迟的快速确认(fast-acknowledge)模式,在这种模式下,在主节点上排队进行副本操作的时候,写入就会进行确认。


对于读取来讲,ZippyDB 支持最终一致、读取自己的写入(read-your-write,该模式指的是系统能够保证一旦某个条目被更新,同一个客户端发起的任意读取请求都会返回更新后的数据,参见该文章的阐述——译者注)和强读模式。“对于‘读取自己的写入’模式,客户端会缓存服务器在进行写入时得到的最新序列号,并且会在随后的读取查询中使用该版本号”。ZippyDB 在实现强读取的时候,会将读取操作路由到主节点上,从而避免与 quorum 进行对话。“在某些极端的情况下,主节点尚未得到更新的消息,这时候对主节点的强读就变成了对 quorum 的检查和读取。”



图片来源:https://engineering.fb.com/2021/08/06/core-data/zippydb/


ZippyDB 支持事务和条件性的写入,从而能够适用于要对一组键进行原子读取-修改-写入操作的使用场景。Masti 介绍了 ZippyDB 的实现:


所有事务在分片上默认是序列化的,我们不支持更低的隔离级别。这简化了服务器端的实现,并且便于在客户端推断出并行执行事务的正确性。事务使用乐观并发控制来探测和解决冲突,作用原理如上图所示。


ZippyDB 中的分片,通常被称为物理分片或 p 分片,是服务器侧的数据管理单位。应用程序将其核心空间(key space)划分为μshard(微分片)。每个 p-shard 通常托管着几万个μshard。根据 Masti 的说法,“这个额外的抽象层允许 ZippyDB 在客户端不做任何改变的情况下透明地重新分片(reshard)数据”。

ZippyDB 利用Akkio实现 p-shard 和μshard 之间的映射,从而得到了进一步优化。Akkio 将μshard 放置在信息通常被访问的地理区域。通过这种方式,Akkio 有助于减少数据集的重复,这样就为低延迟访问提供一个比在每个区域放置数据更有效的解决方案。


原文链接:

ZippyDB: The Architecture of Facebook’s Strongly Consistent Key-Value Store

2021-10-11 20:173969

评论

发布
暂无评论
发现更多内容

聊聊 Python 自动化脚本部署服务器全流程(详细)

星安果

Python 自动化 服务器 部署

产品经理训练营 Week9 学习心得

Mai

mybatis实现分页的几种方法

xiezhr

mybatis 分页 mybatis分页

GO训练营第9周——网络编程

Glowry

GO训练营第8周——分布式缓存与事务

Glowry

@Component,@Service等注解是如何被解析的?

Java小咖秀

spring 面试 工作 注解 经验

设计有意义的选择——再谈心流

Justin

心理学 28天写作 游戏设计

《2020年IT行业项目管理调查报告》重磅发布

禅道项目管理

开源 项目管理 项目 调查报告 互联网行业薪资

经典排序算法分析

roseduan

算法 排序算法

B+树索引优点

一个大红包

3月日更

手机

ES_her0

28天写作 3月日更

算法攻关-最长公共子序列_1143

小诚信驿站

刘晓成 小诚信驿站 28天写作 算法攻关 最长公共子序列

Python 的特殊变量 __name__

HoneyMoose

github 这样用,事半功倍

hepingfly【gzh:和平本记】

Java GitHub 搜索 使用技巧

后台产品导航栏原型设计小教程

lenka

3月日更

华为云数据库GaussDB(for openGauss):初次见面,认识一下

华为云开发者联盟

数据库 分布式 华为云 GaussDB(for openGauss) 开源数据库

企业大数据实战:Kyuubi 与 Spark ThriftServer 的全面对比分析

网易数帆

大数据 spark Kyuubi Thrift HiveServer2

Python基础之:Python的数据结构

程序那些事

Python 程序那些事 python数据结构

2021 OS 大赛来了,为中国操作系统发展按下加速键

InfoQ写作社区官方

热门活动

超简单的网站暗黑模式,它真的超简单!

HelloGitHub

大前端

Wireshark 数据包分析学习笔记Day15

穿过生命散发芬芳

Wireshark 数据包分析 3月日更

产品经理训练营 Week9 作业

Mai

GO训练营第6、7周——可用性设计

Glowry

(28DW-S8-Day27) 销售流程重整

mtfelix

28天写作

JVM - 类加载机制

insight

3月日更

翻译:《实用的Python编程》06_04_More_generators

codists

Python

Nirvana NA公链 NAC公链的两面观

区块链第一资讯

全球币系统开发案例(源码)

系统开发咨询1357O98O718

容器 & 服务:Kubernetes扩容

程序员架构进阶

Docker 容器 kubernete 28天写作 3月日更

Go训练营第5周——评论系统架构设计

Glowry

看完了进程同步与互斥机制,我终于彻底理解了 PV 操作

飞天小牛肉

Java 程序员 面试 操作系统

Facebook强一致性键值存储ZippyDB架构简介_语言 & 开发_Eran Stiller_InfoQ精选文章