写点什么

鸟枪换炮,如何在推荐中发挥 AI Lab 开源中文词向量的威力?

  • 2019-08-22
  • 本文字数:1888 字

    阅读完需:约 6 分钟

鸟枪换炮,如何在推荐中发挥AI Lab开源中文词向量的威力?

本文来自“深度推荐系统”专栏,这个系列将介绍在深度学习的强力驱动下,给推荐系统工业界所带来的最前沿的变化。本文则结合作者在工作中的经验总结,着重于介绍在推荐系统中如何使用腾讯 AI Lab 开源的中文词向量。


近年来,深度学习技术在自然语言处理领域中得到了广泛应用。用深度学习技术来处理自然语言文本,离不开文本的向量化,即把一段文本转化成一个 n 维的向量。在当前“万物皆可 embedding”的思想领导下,词向量既是 NLP 领域中一个非常基础的工具,也是推荐、广告等业务场景中用于召回以及排序等阶段的简单且实用的核武器,主要用于进行语义相似度度量等。


词向量的核心是 word2vec[1],相应原理介绍不是本文介绍的重点。常用的训练工具有 gensim,fasttext 等,一般的训练步骤包括:收集语料 --> 文本过滤 --> 分词 --> 去除停用词 --> 训练模型。


目前,针对英语环境,工业界和学术界已发布了一些高质量的词向量数据,并得到了广泛的使用和验证。其中较为知名的有谷歌公司基于 word2vec 算法[1]、斯坦福大学基于 GloVe 算法[2]、Facebook 基于 fastText 项目[3]发布的数据等。然而,目前公开可下载的中文词向量数据还比较少,并且数据的词汇覆盖率有所不足,

腾讯 AI Lab 开源中文词向量

腾讯 AI Lab 采用自研的 Directional Skip-Gram (DSG)算法 [4] 作为词向量的训练算法。DSG 算法基于基本的 Skip-Gram,在文本窗口中词对共现关系的基础上,额外考虑了词对的相对位置,以提高词向量语义表示的准确性。


数据简介:mp.weixin.qq.com/s/2Sto


数据下载地址:ai.tencent.com/ailab/nl


索引词库大小:800w;词向量维度:200

如何在推荐中使用开源词向量

在推荐系统的基于内容召回策略中,一般需要根据用户已经点击过的文章所包含的 tag 词或者主题,为用户推荐与点击历史中最相似的文章。其中有一种做法就是从文章中抽取 T 个 tag 相应的词向量来表示这篇文章的文章向量(如 vec_doc = w1 * vec_t1 + w2 * vec_t2 + …,这里 w1,w2 是文章中 tag 词相应的权重);然后,根据用户的点击历史计算文章向量的相似度,取 topk 个返回。下面主要实际业务场景中简单的使用步骤:


  • 向量裁剪:从腾讯 AI Lab 官网下载下来的原始词向量库比较大,16G 并且包含大量的停用词。这里可首先计算自己业务场景的 tag 库与这份开源中文自己向量的 tag 集合之间的交集得到裁剪后的向量库。

  • 加载词向量:可以使用 gensim 进行加载。可以参考 gensim 使用手册:radimrehurek.com/gensim


from gensim.models.word2vec import KeyedVectorswv_from_text = KeyedVectors.load_word2vec_format('Tencent_AILab_ChineseEmbedding.txt', binary=False)
复制代码


  • 部分测试数据


model=wv_from_text.wv
print(model.most_similar("如懿传"))[('海上牧云记', 0.8060665130615234), ('孤芳不自赏', 0.7940512299537659), ('醉玲珑', 0.7932543754577637), ('凰权', 0.7888569831848145), ('古装剧', 0.7873178720474243), ('琅琊榜2', 0.7863854765892029), ('延禧攻略', 0.7858327031135559), ('那年花开月正圆', 0.7804251909255981), ('大剧', 0.7796347737312317), ('凤囚凰', 0.7741515040397644)]
print(model.similarity("郭靖","黄蓉"))0.9186713635202067
print(model.n_similarity(["中国","北京"],["俄罗斯","莫斯科"]))0.6441469472853117
print(model.doesnt_match(["洪七公","王重阳","郭靖","黄药师"]))王重阳
复制代码

工业实际应用注意事项

实际使用中我们发现业务场景的 tag 覆盖率与文章覆盖率都有极大比例的提升。同时也带来了业务 CTR 的明显提升。


  • 总体老说腾讯 AI Lab 开源的这份中文词向量的覆盖度比较高,精度也比较高。但是词向量里含有大量停用词,导致文件比较大加载速度较慢(数分钟),而且内存消耗较大,实际使用时根据场景需要裁剪以节省性能;

  • 根据不同领域的情况,有可能某些特定垂直领域的词语之间的相关性计算不是特别准,需要根据业务场景需要加入相应的语料进行增量训练后再使用;

  • 另外,随着时间的推移会不断出现新词,物名,人名等,就需要重新训练模型。如果后期 AI Lab 不再更新维护这份词向量的话,则需要自己进行维护迭代升级。

参考文献

  1. Distributed Representations of Words and Phrases and their Compositionality

  2. GloVe: Global Vectors for Word Representation

  3. Enriching Word Vectors with Subword Information

  4. Yan Song, Shuming Shi, Jing Li, and Haisong Zhang. Directional Skip-Gram: Explicitly Distinguishing Left and Right Context for Word Embeddings. NAACL 2018


本文授权转载自知乎专栏“深度推荐系统”。原文链接:https://zhuanlan.zhihu.com/p/64385839


2019-08-22 08:059316

评论

发布
暂无评论
发现更多内容

软件测试/测试开发丨面向对象编程学习笔记分享

测试人

Python 面向对象 软件测试

用友BIP全球司库连续中标三大银行总行合作项目,共同推动企业数智转型

用友BIP

银行 全球司库

接口测试|postman的介绍和安装

霍格沃兹测试开发学社

为了快一点,所以我慢一点

树上有只程序猿

《面向分布式云的直播及点播云技术创新方案》获中国信通院“分布式云技术创新先锋案例”

阿里云CloudImagine

云计算 视频云 信通院

最强优化指令大全 | 【Linux技术专题】「系统性能调优实战」终极关注应用系统性能调优及原理剖析(下册)

码界西柚

Java Linux 性能优化 JVM GC

接口测试|Fiddler设置断点

霍格沃兹测试开发学社

大型企业数智化的中国力量:用友BIP助力国产替代

用友BIP

国产替代

接口测试|Postman发送带参数的Get请求

霍格沃兹测试开发学社

华为云河图KooMap 共筑数字孪生底座 共建产业标杆

华为云开发者联盟

华为云 华为云开发者联盟 企业号 7 月 PK 榜

多端低代码开发平台魔笔:教你1小时搭建代办事项管理平台

移动研发平台EMAS

低代码开发 多端开发 降本增效 阿里云魔笔

技术领先、结合AI,数智平台成为企业数字化转型的基石

用友BIP

数智平台

App自动化测试|adb版本过低的报错提示

霍格沃兹测试开发学社

使用Flutter开发微信小程序:构建简单的天气预报小程序

Onegun

flutter 小程序容器

人工智能促进知识的公平获取

澳鹏Appen

人工智能 翻译 nlp 数据标注 小语种

为什么说 ICMP 协议是网络最强辅助?

互联网工科生

ICMP

什么是低代码开发,为什么要使用低代码,选择低代码要注意什么?

优秀

低代码 低代码开发

直播预告 | 博睿学院:深入解析nacos基础原理

博睿数据

云原生 nacos 智能运维 博睿数据 博睿学院

接口测试|postman发送POST请求

霍格沃兹测试开发学社

数仓性能调优:大宽表关联MERGE性能优化

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 7 月 PK 榜

软件测试/测试开发丨Python自动化测试学习笔记

测试人

Python 程序员 软件测试 自动化测试

支持目标打卡,活力三环让运动更有趣

HarmonyOS SDK

接口测试|Charles的界面介绍

霍格沃兹测试开发学社

选择香港云主机,让您的网站在全球范围内高速运行

一只扑棱蛾子

香港云主机

基于Surprise协同过滤实现短视频推荐

北桥苏

推荐系统 协同过滤 Surprise

接口测试|Fiddler设置过滤

霍格沃兹测试开发学社

IDC&用友联合发布《建设数字中国升级数智底座-企业数智化底座白皮书》

用友BIP

白皮书 数智底座

和鲸 × 于峻川丨以遥感领域为例,浅谈 AI for Science 科研范式改革

ModelWhale

人工智能 算力 遥感 AI for Science 协同科研

鸟枪换炮,如何在推荐中发挥AI Lab开源中文词向量的威力?_AI&大模型_深度传送门_InfoQ精选文章