50万奖金+官方证书,深圳国际金融科技大赛正式启动,点击报名 了解详情
写点什么

为什么 K8s 需要 Volcano?

  • 2019-11-20
  • 本文字数:2090 字

    阅读完需:约 7 分钟

为什么K8s需要Volcano?

Volcano 是基于 Kubernetes 的批处理系统,源自于华为云开源出来的。Volcano 方便 AI、大数据、基因、渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎,高性能异构芯片管理,高性能任务运行管理等能力。


为什么 K8s 需要 Volcano

K8s 自带的的资源调度器,有一个明显的特点是:依次调度每个容器。但在 AI 训练或者大数据,这种必须多个容器同时配合执行的情况下,容器依次调度是无法满足需要的,因为这些计算任务包含的容器们想要的是,要么同时都成功,要么就都别执行。


比如,某个大数据应用需要跑 1 个 Driver 容器+10 个 Executor 容器(对应 AI 训练的话,就是 1 个 PS 容器+10 个 Worker 容器)。如果容器是一个一个的调度,假设在启动最后一个 executor 容器(对应 AI 是 Worker 容器)时,由于资源不足而调度失败无法启动,那么前面的 9 个 executor 容器虽然运行着,其实也是浪费的。


AI 训练也是一样的道理,必须所有的 Worker 同时运行,才能进行训练,坏一个,其他的容器就等于白跑。而 GPU 被容器霸占着却不能开始计算,成本是非常高的。


所以当你的(1)总体资源需求<集群资源的时候,普通的 K8s 自带调度器可以跑,没问题。但是当(2)总体资源需求>集群资源的时候,K8s 自带调度器会因为随机依次调度容器,使得部分容器无法调度,从而导致业务占着资源又不能开始计算,死锁着浪费资源。那么场景(1)和场景(2)谁说常态呢?不用说,肯定是(2)了,谁能大方到一直让集群空着呢对吧。这种情况就必须需要增强型的 K8s 资源调度器 Volcano 了。

资源调度领域

当用户向 K8s 申请容器所需的计算资源(如 CPU、Memory、GPU 等)时,调度器负责挑选出满足各项规格要求的节点来部署这些容器。通常,满足各项要求的节点并非唯一,且水位(节点已有负载)各不相同,不同的分配方式最终得到的分配率存在差异,因此,调度器的一项核心任务就是以最终资源利用率最优的目标从众多候选机器中挑出最合适的节点。


除了资源维度上的要求,实际调度中还有容灾和干扰隔离上的考虑:比如同一应用的容器不允许全部部署到同一台节点上,很多应用会要求每台节点上只允许有一个实例。另外,某些应用组件之间还存在互斥关系(如资源争抢),严重影响应用的性能,因此也不允许它们被部署到同一台节点上。这些限制条件的引入,使得想新写一款调度器,能替代原生 K8s 调度器并不容易。

算法分析

Volcano 首先要解决的问题就是 Gang Scheduling 的问题,即一组容器要么都成功,要么都别调度。这是最基本的用来解决资源死锁的问题,可以很好提高集群资源利用率(在高业务负载时)。


除此之外,它还提供了多种调度算法,例如 priority 优先级,DRF(dominant resource fairness), binpack 等。 我们今天就是挖一挖 Volcano 内部的各种调度算法实现。


3.1 Gang Scheduling


这种调度算法,首先是有’组’的概念,调度结果成功与否,只关注整一’组’容器。


具体算法是,先遍历各个容器组(代码里面称为 Job),然后模拟调度这一组容器中的每个容器(代码里面称为 Task)。最后判断这一组容器可调度容器数是否大于最小能接受底限,可以的话就真的往节点调度(代码里面称为 Bind 节点)。



3.2 DRF(dominant resource fairness)


这种调度算法,主要是 Yarn 和 Mesos 都有,而 K8s 没有,需要补齐。概括而言,DRF 意为:“谁要的资源少,谁的优先级高”。这样可以满足更多的作业,不会因为一个胖业务,饿死大批小业务。注意:这个算法选的也是容器组(比如一次 AI 训练,或一次大数据计算)。



3.3 binpack


这种调度算法,目标很简单:尽量先把已有节点填满(尽量不往空白节点投)。具体实现上,binpack 就是给各个可以投递的节点打分:“假如放在当前节点后,谁更满,谁的分数就高”。因为这样就能尽量将应用负载靠拢至部分节点,非常有利于 K8s 集群节点的自动扩缩容功能。注意:这个算法是针对单个容器的。



3.4 proportion(Queue 队列)


Queue 功能是 Yarn 调度器有的功能,K8s 需要补齐。不过我对 Queue 这个取名有些不太满意。因为它实际是用来控制集群总资源分配比例的。比如某厂有 2 个团队,共享一个计算资源池。管理员设置:A 团队最多使用总集群的 60%,B 团队最多使用总集群的 40%。投递的任务量,超过该团队的可用资源怎么办?那就排队等呗,所以特性取名 Queue。



3.5 最终权重


由于 Volcano 的调度算法插件实在太多,每个插件的决策又有可能互相干扰。所以为了在各个算法间做权衡,又给插件设置了权重,这样可以控制每种调度算法插件的影响因子。比如 NodeOrder 算法里面,就是在优选阶段(注:K8s 调度,分预选阶段和优选阶段。预选就是排除不符合的节点。优选就是给所有符合的节点打分)给节点打分的算法。各个算法有自己的权重可以配置。

Volcano

Volcano 项目的前身是 Kube-Batch,一个带着想解决 K8s 不支持 Gang Scheduling 问题初衷的项目。后来由于 AI 和大数据等业务领域也开始对 K8s 有述求,团队成员希望有一种喷薄而出的感觉,所以带上具体场景实践经验,重新将项目命名为 Volcano–火山,希望能够推动 K8s 在各个场景下向火山一样热烈绽放。


项目地址


添加小助手微信,加入【容器魔方】技术社群。



2019-11-20 19:134640

评论

发布
暂无评论
发现更多内容

FT-FMEA融合混沌演练,零售运营系统韧性架构在线验证实践

华为云开发者联盟

开发 华为云 华为云开发者联盟 确定性运维 企业号2024年5月PK榜

聊聊Python多进程

我再BUG界嘎嘎乱杀

Python 编程 后端 多进程 开发语言

故障排查难?xpu_timer 让大模型训练无死角!

可信AI进展

数据库与人工智能的关系

悦数图数据库

图数据库

基于大语言模型的应用

悦数图数据库

大语言模型

浪潮信息-龙蜥技术认证上线,培训专场圆满召开

OpenAnolis小助手

操作系统 龙蜥社区 浪潮信息 龙蜥人才培养计划

百度智能云参与信通院多项边缘计算标准编制,「大模型时代下云边端协同 AI 发展研讨会」成功召开

Baidu AICLOUD

边缘计算 大模型 边缘计算平台

龙蜥SIG月度动态:两大特性合入 Linux 主线,提供高速本地通信加速及丰富的设备信息

OpenAnolis小助手

操作系统 高性能网络 龙蜥社区 龙蜥技术sig

开启未来出行新纪元:44.8英寸超视界9K疾速屏智能座舱,高端车载显示技术引领用户体验新变革!

爱极客侠

聊聊缺陷逃逸率

老张

质量保障 缺陷管理 缺陷预防

如何通过店铺集群实现高效库存规划

第七在线

2024年API趋势,哪些API将增加市场份额?

幂简集成

API

浪潮信息-龙蜥技术认证上线,培训专场圆满召开

OpenAnolis小助手

开源 操作系统 龙蜥社区 浪潮信息 龙蜥人才培养计划

CaffeineCache Api介绍以及与Guava Cache性能对比| 京东物流技术团队

京东科技开发者

暗水印——空域:二值化图像水印(看不见我吧 啦啦啦~)

京东科技开发者

高薪线下周末班马上开班,手把手带你提升职业技能

霍格沃兹测试开发学社

云计算技术架构揭秘与发展

Finovy Cloud

云计算 云计算架构

担心巡检作假?草料五大防作假功能,可组合使用

草料二维码

设备巡检 设备管理 草料二维码 设备巡检系统 二维码巡检

深入理解Python中的深拷贝与浅拷贝

我再BUG界嘎嘎乱杀

Python 编程语言 后端 开发语言 深拷贝与浅拷贝

天翼AI云电脑重塑未来工作方式的利器,邀您5月25日相聚福州!

编程猫

GPT-4o 后 LLM 时代 RTC 需求讨论会丨社区伙伴活动分享

声网

基于龙蜥衍生版 KeyarchOS 的 LVM 卷管理技术与实践 | 干货推荐

OpenAnolis小助手

操作系统 技术干货 龙蜥社区 龙蜥操作系统 浪潮信息

Vite 的预构建原理与实践| 京东物流技术团队

京东科技开发者

如何通过算法触达,高效唤醒沉睡会员?奇点云“向价值进发”直播回顾

先锋IT

为什么K8s需要Volcano?_架构_华为云原生团队_InfoQ精选文章