写点什么

苹果研究人员提出集成反演技术,可从不同机器学习模型中重建训练数据

  • 2021-12-07
  • 本文字数:1473 字

    阅读完需:约 5 分钟

苹果研究人员提出集成反演技术,可从不同机器学习模型中重建训练数据

MI 攻击


近几年,模型反演(Model inversion, MI)攻击备受关注。MI 攻击是指滥用经过训练的机器学习(ML)模型,并借此推断模型原始训练数据中的敏感信息。遭受攻击的模型经常会在反演期间被冻结,从而被攻击者用于引导训练生成对抗网络之类的生成器,最终重建模型原始训练数据的分布。


因此,审查 MI 技术对正确建立模型保护机制至关重要。


借助单一模型高质量地重建训练数据的过程非常复杂,然而,现有的 MI 相关文献并没有考虑到多个模型同时被攻击的可能性,这类情况中攻击者可以找到额外的信息和切入点。


如果攻击成功,原始训练样本泄露,而其训练数据中如果包含个人的身份信息,那么数据集中的数据本体的隐私将会受到威胁。

集成反演技术


苹果的研究人员提出了一种集成反演的技术,借助生成器来估计模型原始训练数据的分布,而该生成器则被限制在一系列共享对象或实体的训练模型之中。


对比使用单一机器学习模型的 MI,使用该技术生成的样本质量得到了显著的提升,并具备了区分数据集实体间属性的能力。这证明了如果借助与预期训练结果相类似的辅助数据集,可以在不使用任何数据集的情况下依旧可以得到高质量结果,改善反演的结果。通过深入研究集成中模型多样性对结果的影响,并添加多重限制以激励重建样本获得高精确度和高激活度,训练图片的重建准确程度得到了提升。


对比针对单一模型的 MI 攻击,该研究所提出的模型在重建性能上展现了明显的提升。该研究不仅利用最远模型采样法(FMS)进行集成中模型多样性的优化,还创建了一个模型间等级对应关系明确的反演集成,模型的输出向量中的增强信息也被用来生成更优的限制条件,以更好地确定目标质量的高低。


通过随机训练的形式,小批量随机梯度下降(SGD)这类的主流动态卷积神经网络(DCNN),可以使用任意的大型数据集进行训练。DCNN 模型对训练数据集中最初的随机权重和统计上的噪音非常敏感,而由于学习算法的随机性,同一训练集可能会生成侧重特征不同的模型。因此,为减少差异性,研究者一般会使用集成学习,一种简单的技巧来提升 DCNN 辨别式训练的性能。



虽然这篇论文是以集成学习为基础进行的研究,但论文对“集成”一词却有不同的定义。


若想成功对模型进行反演,攻击者不能假定目标模型一定是通过集成学习进行训练的,但他们却可以通过搜集有关联的模型搭建一个攻击模型的集成。换句话来说,在“集成反演攻击”这个语境下,“集成”不是要求模型一定要经过集成训练,而是指攻击者从各种来源所收集到相关模型的集合。


举例来说,研究者可以通过不断收集新的训练数据,对当前模型进行训练并更新结果,而攻击者则可以将这些模型收集为一个集合并加以利用。


借助该策略,无数据的 MNIST 手写数字的反演准确率提升了 70.9%,而基于辅助数据的试验准确率则提高了 17.9%;对比基准实验,人脸反演的准确率提升了 21.1%。论文的目标是,以更系统的方式对现有模型反演策略进行评估。在未来的研究中,需以针对这类集成的模型反演攻击开发相应的保护机制为重点。

结论


论文中提出的集合反演技术,可以利用机器学习模型集合中的多样性特质提升模型反演的性能表现;通过结合 one-hot 损失和最大化输出激活损失函数,让样本质量得到了更进一层的提升。除此之外,过滤掉攻击模型中含有较小最大化激活的生成样本也可以让反演表现更加突出。同时,为确定目标模型的多样性对集合反演性能的影响,研究者深入探索研究了各种差异下目标模型的表现情况。


论文原文:利用集成反演从各类机器学习模型中重建训练数据


英文原文Apple Researchers Propose A Method For Reconstructing Training Data From Diverse Machine Learning Models By Ensemble Inversion

2021-12-07 10:261942

评论

发布
暂无评论
发现更多内容

Hadoop 企业级生产调优手册 (二)

大数据技术指南

11月日更

Alibaba5轮视频面:同事+组长+主管+项目+HR,收割Java岗offer

热爱java的分享家

Java 面试 程序人生 编程语言 经验分享

数据网格简史

俞凡

架构 数据

网络安全是一门高级学科,如何入门,看这里!

网络安全学海

网络安全 信息安全 渗透测试 WEB安全 安全漏洞

写代码的思路

king

微博评论高性能高可用的设计

云里雾花

智慧警务系统开发,警务通app搭建

电微13828808271

技术解析+代码实战,带你入门华为云政务区块链平台

华为云开发者联盟

区块链 华为云 政务 Baas 异构链

五面阿里拿下飞猪事业部offer,2021新鲜出炉阿里巴巴面试真题

热爱java的分享家

Java 面试 程序人生 编程语言 经验分享

系统架构性能优化思路

五分钟学大数据

11月日更

为什么要做漏洞扫描呢?

华为云开发者联盟

安全 风险 漏洞 漏洞扫描 安全认证

5年crud经验,三个月啃透888页Java王者级核心宝典,竟翻身阿里p6

热爱java的分享家

Java 架构 程序人生 编程语言 经验分享

网络协议之:一定要大写的SOCKS

程序那些事

网络协议 程序那些事 11月日更 SOCKS

Flutter 的动画包【Flutter专题4】

坚果

flutter 签约计划第二季

Go语言学习查缺补漏ing Day9

Regan Yue

Go 语言 11月日更

大厂算法面试之leetcode精讲8.滑动窗口

全栈潇晨

算法面试 Leet Code

六年Java老鸟,写给1-3年程序员的几点建议,满满硬货指导

热爱java的分享家

Java 架构 面试 程序人生 编程语言

Python 可以满足你任何 API 使用需求

华为云开发者联盟

Python API 程序 网络通信 公共数据

react源码解析2.react的设计理念

buchila11

React React Hooks

质量基础设施“一站式”平台,NQI一站式云平台开发

电微13828808271

深入了解Netty原理篇

邱学喆

Netty

react源码解析1.开篇介绍和面试题

buchila11

React

归并排序,我举个例子你就看懂了

华为云开发者联盟

算法 归并排序 序列 归并 分治法

Vue前端开发规范

CRMEB

46道史上最全Redis面试题,面试官能问的都被我找到了(含答案)

热爱java的分享家

Java 架构 程序人生 编程语言 经验分享

DDD领域驱动设计落地实践系列:初识DDD

慕枫技术笔记

架构 后端 签约计划第二季

不愧是阿里p8大佬!终于把Java 虚拟机底层原理讲清楚了,请签收

热爱java的分享家

Java 面试 程序人生 编程语言 经验分享

精选2021年大厂高频Java面试真题集锦(含答案),面试一路开挂

热爱java的分享家

Java 架构 面试 程序人生 经验分享

在 Flutter 中使用 dio【Flutter专题3】

坚果

flutter 签约计划第二季

基于Serverless的端边云一体化媒体网络

华为云开发者联盟

Serverless 端边云 媒体网络 视频云 边缘云

基于实践:一套百万消息量小规模IM系统技术要点总结

JackJiang

网络编程 架构设计 即时通讯 IM

苹果研究人员提出集成反演技术,可从不同机器学习模型中重建训练数据_文化 & 方法_Nitish Kumar_InfoQ精选文章