QCon北京「鸿蒙专场」火热来袭!即刻报名,与创新同行~ 了解详情
写点什么

甲骨文副总裁:只会 SQL 也可以搞定 AI,但对 DBA 的要求将更高

  • 2024-05-27
    北京
  • 本文字数:1936 字

    阅读完需:约 6 分钟

大小:957.81K时长:05:26
甲骨文副总裁:只会SQL也可以搞定AI,但对 DBA 的要求将更高

“最重要的不在于拥有多少大模型,而在于如何使用它们。”甲骨文公司副总裁及中国区董事总经理吴承杨说道。 

 

在全民探索大模型应用的现在,甲骨文也积极尝试。Oracle 融合数据库中的最新版本 Oracle Database 23ai 作为广泛的云技术服务正式发布,标志着甲骨文在 AI 领域的重大进展。

“只会 SQL,也可以全盘搞定 AI”

 

由于这个版本主要加入了突破性的 AI 技术,因此甲骨文将 Oracle Database 23c 重命名为 Oracle Database 23ai。

 

甲骨文公司中国区技术咨询部高级总监李珈介绍,23ai 专注 AI 主要体现在三个方面:一是 AI for Data,在数据应用在 AI 的层面上做深入加持;二是针对应用开发者,在使用层面上能够更简单;三是针对关键任务赋予 AI 能力。

 

此长期支持版本包含了 Oracle AI Vector Search 、300 多个主要新功能和数千项增强功能,专注于帮助用户简化数据中的 AI 使用。

 

AI Vector Search(AI 向量搜索) 是 Oracle Database 23ai 的一项重要功能,用户可以借此根据概念内容(而不是特定的文字、像素或数据值)来搜索文档、图像和关系数据,同时用户可以使用自然语言界面查询私有业务数据,并帮助 LLM 提供更准确和更相关的结果。

 

为什么不是一个单独的向量数据库或在 Database 引擎之上再拓展一个向量引擎?李珈表示,这样做的最大好处就是可以把业务数据和向量数据整合在一起。比如,原来用大量的业务数据做 AI 应用需要把数据拷贝出去,AI Vector Search 则可以用一个 SQL 直接查找业务数据和向量数据及其他数据类型的数据。

 

在向量化过程中,原来的做法是调一个大模型或一个嵌入的算法,这对有 GPU 资源的用户比较友好,对于多数没有设备资源的用户,Oracle 提出了新的 SQL 嵌入函数,可以把符合标准的嵌入模型放到 Oracle 里面,用 Oracle 数据库的引擎来帮用户做向量化,这样意味着即便没有 AI 方面的经验、只会 SQL,也可以全盘搞定这个过程。

 

此外,Oracle Database 23ai 可以在客户数据中心本地部署,也可以在云上部署。甲骨文还提供了 Oracle Digital Assistant,这是一个嵌入在 Oracle 应用中的数据助手,可以帮助回答客户问题。

 

“300 多个新功能,对于 23ai 的这个版本来讲非常有战略意义,是真正的 Game Changer。” 李珈说道。

 

甲骨文投入了大量的资金用于人才培养、科技研发和基础设施建设,以确保用户能够获得高质量的服务。Oracle Database 23ai 的研发周期通常为五年一个大版本的更新,但在每个季度都会有季度性的版本发布。

 

费用方面,吴承杨表示,甲骨文数据库的定价一直是以使用的 CPU 量来计算的,不会因为 23ai 的发布而改变定价规则。Oracle Database 23ai 中 AI 功能的使用不需要额外付费,因为它是作为一个新功能添加到现有版本中的。

 

“生成式 AI 用得好不好,只有一个标准,就是可以给用户带来什么效果,用户是否得到了本质性上的改变。”吴承杨强调,AI 的功能应该像用电一样简单易用,用户不需要成为 AI 科学家,只需懂得 SQL 即可。

 

李珈介绍,甲骨文开始做 Vector DB 以来,金融、电信、制造业等用户也积极跟进,应用场景包括欺诈分析,各种各样的智能体、AI 助手,长视频检测等。

 

“数据库 AI 化是一个必然趋势”

 

“随着生成式 AI 的出现,融合数据库将变得更加重要。”吴承杨说道。

 

融合数据库能够处理结构化数据、非结构化数据、图数据、JSON 和空间数据等多种数据类型,因此能够简化应用和分析的生成与运行。

 

企业在使用生成式 AI ,大模型应用时,更希望将企业内部数据放在本地。用户可以使用任何一个国产或国外的模型,比如 Llama-3,可以使用各种数据库来做 RAG。没有融合数据库,这些事情也可以做到,但需要一个很强大的开发商和复杂的技术架构。。

 

吴承杨认为,简化企业大模型应用的逻辑是“四个任何”:任何时候、任何地方、任何人、任何数据,都可以使用。把这四个加起来以后,就真正地解决了很多的问题。甚至用户自己内部的工程师、以前的 DBA 就可以解决。

 

吴承杨提到,随着 AI 进入数据库,未来对 DBA 的要求将会有所不同。“对未来的 DBA 来说,像数据库的管理、打补丁等能力基本不太需要或者需要比较少,但是对整个架构、整个数据应用方面的要求,会比以前的要求高很多。虽然仍被称为 DBA,但是要求不一样、工作范畴更大。”

 

甲骨文还强调了其向量数据库产品完全继承了 Oracle 数据库的企业级特性,包括安全、稳定、可靠和可扩展性。Oracle Real Application Clusters (RAC) 保护实例,Active Data Guard (ADG) 保护容灾。甲骨文还提供了强大的备份功能,以及 Exadata 数据库一体机,以满足高性能需求。

 

“Oracle AI 使我们的融合数据库上了一个非常大的台阶。”吴承杨说道。

 

吴承杨表示,数据库的 AI 化是一个必然趋势。对于一个数据库先进性的衡量,对 AI 的支持是必选项。而对于甲骨文来说,现在只是迈出了第一步,未来的想象空间是非常大的。

 

2024-05-27 10:004334

评论

发布
暂无评论
发现更多内容

重磅!北京区域已经推出第三个可用区啦

亚马逊云科技 (Amazon Web Services)

前端工程化的思考

金科优源汇

建信金科大咖访谈:人工智能技术应用与展望

金科优源汇

Linux学习经验分享:搞定这六点,Linux命令So easy!

学无止境的阿奔

Linux 分布式 运维 C/C++

深入了解java线程篇之ThreadPoolExecutor

邱学喆

线程池状态 任务提交 任务执行 动态调整线程池参数

什么是NQI?质量基础设施“一站式”服务平台我来帮你搭建

源中瑞-龙先生

NQI 质量基础设施“一站式”

肝到头秃!阿里爆款的顶配版Spring Security笔记

Java 程序员 架构 面试 计算机

【Jetpack篇】协程+Retrofit网络请求状态封装实战(2)

付十一

Android进阶 JetPack

区块链创新食品溯源--让舌尖上的安全看的见

13530558032

gitlab服务端hook,拦截糟糕的提交到仓库

阿呆

gitlab hook

给几位粉丝做完面试辅导后,我发现了一些问题!(Java岗)

Java架构师迁哥

什么是网络流量劫持?

网络安全学海

网络安全 安全 渗透测试 安全漏洞 网络攻防

亚马逊云科技宣布Amazon WAF 在北京区域和宁夏区域正式上线

亚马逊云科技 (Amazon Web Services)

源中瑞区块链BaaS平台为企业一键部署区块链应用

13530558032

因子分解机(十九)

Databri_AI

因子 分解机

NeoFetch - Linux 使用命令行查看系统信息

HoneyMoose

【Jetpack篇】协程+Retrofit网络请求状态封装实战

付十一

Android进阶 JetPack

平安社区建设解决方案.智慧小区平台系统建设

SpringCloud Gateway 路由断言

中原银行

函数式接口 reactor SpringCloud Gateway

网络攻防学习笔记 Day56

穿过生命散发芬芳

网络攻防 6月日更

TDH8.0使用必读2: 10种数据模型全支持 未来属于多模型大数据平台

星环科技

用Python手动实现LRU算法

IT蜗壳-Tango

6月日更 算法训练营 算法训练营2021第0期

拥抱数字娱乐家庭新生态,亚马逊云科技赋能智象“蛟龙出海” | 精选案例

亚马逊云科技 (Amazon Web Services)

企微私域经营

soho

星环科技边缘计算平台Sophon Edge通过EC Ready边缘服务权威评测!

星环科技

Ubuntu 安装 NTP 服务

HoneyMoose

Jenkins 控制台输出中的奇怪字符

HoneyMoose

软件工程师的10个认知模型

俞凡

认知

计算机组成原理 寄存器实验详解(含工程文件)

若尘

计算机组成原理 6月日更

阿里架构师通过“58个基于知识的实例+2个项目”来讲解Spring Boot

Java架构师迁哥

抖音电商发布创作者管理总则:如何明确带货主播和平台的责任

石头IT视角

甲骨文副总裁:只会SQL也可以搞定AI,但对 DBA 的要求将更高_AI&大模型_褚杏娟_InfoQ精选文章