写点什么

阿里 99 大促模型识别背后的样本生成

  • 2019-09-29
  • 本文字数:2868 字

    阅读完需:约 9 分钟

阿里99大促模型识别背后的样本生成

背景

在上一篇文章《详解阿里99大促活动页内容识别技术实现》里,我们介绍了在淘宝 99 大促中,我们使用了怎样的算法模型去识别并完成自动化测试的。

样本问题的困难点

淘宝大促有近百个模块、上千个页面,模块间具有相似性,并且模块内部具备多种状态,如果想要准确识别每个模块类型,单模块的样本数量至少要达到万级,而人工标注成本高、效率低下、数据量少,纯靠人力是无法满足模型诉求的。基于此,今天,我来介绍下,模型识别背后的大批量数据样本生成的技术方案。

思路

总体技术方案如下,后面会分别详细讲:


模型的样本要求

算法模型识别的输入是 99 大促的各个会场截图,输出是目标模块名称及其在截图中的坐标位置。


模型训练时,就是把模块渲染图、相应坐标位置与模块类型输入给模型,交给模型去进行监督学习。而模型需要的,就是各个模块大批量的图片样本。



一个模块,是由 View 和 ViewModel 组合而成,而 View 是固定的,ViewModel 跟随会场场景不同,是动态变化的。


那么,如果我们能拿到描述模块的 View 的这一层 DSL,辅助以动态的 ViewModel 数据,再把 View 和 ViewModel 渲染成图片,那我们就可以生成无穷无尽的样本数据了。

DSL 描述 View


仔细梳理之后,View 拆分为原子级元素(Text、Image、Shape)和原子级元素的组合关系(Group),即与 HTML DOM 树状结构中的各层级容器嵌套与叶子节点类型是同样的逻辑。


基于节点类型和节点样式的 DSL,我们就能描述一个完整的 View 了。


{  "layers": [{    "frame": {      "y": 354,      "x": 44,      "height": 32,      "width": 312    },    "id": 2,    "type": "text",    "value": "Adidas Stan Smith",    "textStyles": {      "fontFamily": "Helvetica, sans-serif",      "fontSize": 24    }  }, {    "frame": {      "y": 0,      "x": 384,      "height": 342,      "width": 342    },    "id": 3,    "type": "image",    "value": "//img.alicdn.com/bao/uploaded/i1/TB1.mcuNpXXXXctXFXXSutbFXXX.jpg_350x350Q50s50.jpg_.webp",    "styles": {      "height": 342,      "width": 342    }  }, {    "frame": {      "y": 0,      "x": 384,      "height": 342,      "width": 342    },    "id": 4,    "type": "shape",    "styles": {      "height": 342,      "width": 342,      "backgroundColor": "rgba(0, 0, 0, 0.1)"    }  }],  "frame": {    "y": 0,    "x": 0,    "height": 4920,    "width": 750  },  "id": 1,  "type": "group",  "moduleName": "pmod-zebra-recommand-item"}
复制代码


其中,除了节点类型和节点样式之外,最外层的 moduleName 代表模块名称,id 是为了标记每一个子元素,frame 是每个子元素的坐标位置、辅助算法模型识别模块内部子元素,value 值只有 text 和 image 才有,对应相应的文本值还有图片链接。

获取模块 View 的 DSL

有 3 种方案可以获取到模块 View 的 DSL,分别是:


  1. 从代码仓库中获取;

  2. 从 sketch 视觉稿中生成;

  3. 从浏览器渲染好的页面中获取。


我最后选择了第三种方案,放弃第一个方案是因为代码写法千差万别,很多展现逻辑还包含在 js 代码中,并且还要处理各种 for 循环子 View、style 的映射关系等等,复杂度太高。第二个方案目前集团内已有技术方案 imgcook,这一块的准确率听说还不错,并且一直在持续优化,而最终选择第三个方案的原因是,能 100%准确地还原模块 DSL,并且只需要关注模块最终展现给用户时候的形态,不需要理会过程中开发者做得各种复杂业务逻辑,复杂度相对低很多。

技术方案

在开发流程上,每个模块在开发完成后,都会有对应的模块预览页面。我使用了 puppeteer 模拟真实浏览器,对模块的节点信息进行提取,并保存为规范的 DSL。


清洗 window.getComputedStyle

通过 window.getComputedStyle 获取 DOM 节点的样式,会返回包含 280 个样式属性的对象,如果把每个 DOM 节点的所有 280 个样式属性都存储到 DSL 中,会造成两个问题:


  • DSL 文件冗余,且文件大小过大,解析耗时。

  • 增加算法同学对 DSL 的理解和调整成本。


第一步,隐藏默认属性值;


大部分的样式属性都是默认值,我们首先把默认的样式属性剔除出去。


css{alignSelf: 'auto',...}
复制代码


第二步,剔除无效属性;


开发者常用的样式属性在 20 个左右,有很多的样式是不具备实际效用的,把无效用的样式属性剔除掉,比如说:


{zoom: '1',writingMode: 'horizontal-tb',...}
复制代码


第三步,transform 动态计算


通过 getComputedStyle 拿到的 transform 属性值是一个矩阵方法 matrix(),感兴趣的同学可以去学习理解下 2D 转换矩阵。我们使用 puppeteer 模拟浏览器设置的屏幕宽度是 750,也就是说,得到的 transform 值中 translateX 和 translateY 两个值是以 750 为基准换算得到的一个数字,假如想要在下面描述到的将 DSL 渲染成图时(算法同学期望能模拟各种各样的屏幕尺寸去生成样本),就必须将获取到的 transform 值换算成相应屏幕设备时的值。


# 为了方便算法同学更好使用DSL渲染成图的工具,这里使用python来实现# screenshotShape是一个数组,代表屏幕宽高  [width, height]if 'transform' in style and 'matrix' in style['transform']:    matrix = style['transform'][7:-1].split(',')    translate = list(map(float, matrix[-2:]))    translateResult =  list(map(str, [distance*(screenshotShape[0]/750) for distance in translate]))    matrix[-2:] = translateResult
复制代码


通过以上 3 个步骤,最终得到的 DOM 节点样式属性个数一般维持在 20 个以内,能使输出的 DSL 精简非常多。

DSL 渲染成图片

同样的,我们能基于 puppeteer 去对页面做操作,也能使用它去把 DSL 渲染成目标模块页面,并截图。


首先,建立 DSL 与 HTML 标签的映射关系



其次,如果是 DSL 类型为 Group,就递归遍历里面的所有子元素,以此类推。完整的渲染流程图如下:


ViewModel 动态数据

一个模块,应用到 99 大促、双十一等各种会场,背后样式都是一致的,只有对应的数据不同,动态的数据一般是商品图片和商品信息。


闲鱼有一亿多的商品数据,如果把这商品数据拿过来与 View 一起渲染成模块,每个模块就有了成千上万种展现形态,且贴合算法模型实际识别过程中的输入,既能满足样本数量的要求,也能符合模型实际识别的场景,使模型准确率获得更大地提升。

效果

通过这样一条生成样本的通道,每个模块都能够提供给算法同学几万张质量很高的样本截图,使模型的准确率达到 98%以上。

展望

上述文章描述了如何批量生成样本来帮助解决算法模型对 99 大促和双十一会场中各个模块的识别。


目前,对模块 DSL 的动态调整依赖算法同学对模块的理解,eg.改变圆角 borderRadius 生成更多正向样本,或者增加噪声,eg.删除商品内容节点等生成负向样本,这些操作都需要算法同学对 DSL 进行定制化配置。在未来,我们希望尝试把这部分的工作也交给模型去处理,让模型对样本生成做决策,调整 DSL 的局部,并生成样式更加丰富和可靠的样本。


本文转载自公众号闲鱼技术(ID:XYtech_Alibaba)


原文链接


https://mp.weixin.qq.com/s/CvS4y73Q7hgIAfSzhxEuNg


2019-09-29 08:001426

评论

发布
暂无评论
发现更多内容

HyperWorks二维网格划分与单元连续性

智造软件

网格 Hypermesh hyperworks

剧本杀平台(源码+文档+部署+讲解)

深圳亥时科技

CST电磁仿真教程:如何进行时域自适应网格设置

思茂信息

网络 仿真 cst

数字身份发展趋势前瞻:增强用户体验

芯盾时代

数字身份 iam 统一身份认证

通过Forcebot压测实践简述“并发模式”与“RPS模式”两种模式的区别

京东零售技术

遇到慢查询怎么办?一文解读MySQL 8.0查询分析工具

华为云开发者联盟

MySQL sql EXPLAIN 慢查询分析

袋鼠云秋季发布会圆满落幕,AI驱动让生产力数智化

袋鼠云数栈

数据库 大数据 数据分析

大模型退潮,奇点将至|StartDT Talk

奇点云

AI

HarmonyOS 5.0应用开发——文件读写

高心星

鸿蒙 HarmonyOS 鸿蒙5.0 HarmonyOS NEXT

物联网监控数据采集,传输和存储方案:使用 GreptimeDB 和 YoMo

Greptime 格睿科技

数据库 物联网 集成 数据监控

火山引擎VeDI数据服务平台:在电商场景中,如何解决API编排问题?

字节跳动数据平台

ChatGPT网页正式上线搜索聊天记录功能!埃隆马斯克的xAI正试图筹集数十亿美元|AI日报

可信AI进展

观测云产品更新 | 云账单分析、主机网络监控、数据访问等

观测云

云账单

浅谈TiKV集群运维问题排查与修复——磁盘空间占用问题

vivo互联网技术

运维 TiKV

小间距LED显示屏前维护的意义

Dylan

产品 厂商 LED显示屏 屏幕

WEB 3D CAD中绘制一个窗户模型

WEB CAD SDK

STP CAD 2023下载

智慧无界,Hi MateBook系列重塑全场景智慧办公体验,首发4599元起

极客天地

怎么快速过等保三级?如何办理?

行云管家

等保 等保三级

EMR Serverless Spark:一站式全托管湖仓分析利器

阿里云大数据AI技术

大数据 Serverless 数据分析 云原生 EMR

双报到系统(源码+文档+部署+讲解)

深圳亥时科技

超完整性能报告合集!GreptimeDB 多场景性能对比和深度解析来了

Greptime 格睿科技

Grafana 时序数据库 SQLite 数据库的工具 性能报告

海东等保测评机构有哪些?电话多少?

行云管家

网络安全 等保 等保测评

阿里99大促模型识别背后的样本生成_文化 & 方法_云听_InfoQ精选文章