写点什么

阿里 99 大促模型识别背后的样本生成

  • 2019-09-29
  • 本文字数:2868 字

    阅读完需:约 9 分钟

阿里99大促模型识别背后的样本生成

背景

在上一篇文章《详解阿里99大促活动页内容识别技术实现》里,我们介绍了在淘宝 99 大促中,我们使用了怎样的算法模型去识别并完成自动化测试的。

样本问题的困难点

淘宝大促有近百个模块、上千个页面,模块间具有相似性,并且模块内部具备多种状态,如果想要准确识别每个模块类型,单模块的样本数量至少要达到万级,而人工标注成本高、效率低下、数据量少,纯靠人力是无法满足模型诉求的。基于此,今天,我来介绍下,模型识别背后的大批量数据样本生成的技术方案。

思路

总体技术方案如下,后面会分别详细讲:


模型的样本要求

算法模型识别的输入是 99 大促的各个会场截图,输出是目标模块名称及其在截图中的坐标位置。


模型训练时,就是把模块渲染图、相应坐标位置与模块类型输入给模型,交给模型去进行监督学习。而模型需要的,就是各个模块大批量的图片样本。



一个模块,是由 View 和 ViewModel 组合而成,而 View 是固定的,ViewModel 跟随会场场景不同,是动态变化的。


那么,如果我们能拿到描述模块的 View 的这一层 DSL,辅助以动态的 ViewModel 数据,再把 View 和 ViewModel 渲染成图片,那我们就可以生成无穷无尽的样本数据了。

DSL 描述 View


仔细梳理之后,View 拆分为原子级元素(Text、Image、Shape)和原子级元素的组合关系(Group),即与 HTML DOM 树状结构中的各层级容器嵌套与叶子节点类型是同样的逻辑。


基于节点类型和节点样式的 DSL,我们就能描述一个完整的 View 了。


{  "layers": [{    "frame": {      "y": 354,      "x": 44,      "height": 32,      "width": 312    },    "id": 2,    "type": "text",    "value": "Adidas Stan Smith",    "textStyles": {      "fontFamily": "Helvetica, sans-serif",      "fontSize": 24    }  }, {    "frame": {      "y": 0,      "x": 384,      "height": 342,      "width": 342    },    "id": 3,    "type": "image",    "value": "//img.alicdn.com/bao/uploaded/i1/TB1.mcuNpXXXXctXFXXSutbFXXX.jpg_350x350Q50s50.jpg_.webp",    "styles": {      "height": 342,      "width": 342    }  }, {    "frame": {      "y": 0,      "x": 384,      "height": 342,      "width": 342    },    "id": 4,    "type": "shape",    "styles": {      "height": 342,      "width": 342,      "backgroundColor": "rgba(0, 0, 0, 0.1)"    }  }],  "frame": {    "y": 0,    "x": 0,    "height": 4920,    "width": 750  },  "id": 1,  "type": "group",  "moduleName": "pmod-zebra-recommand-item"}
复制代码


其中,除了节点类型和节点样式之外,最外层的 moduleName 代表模块名称,id 是为了标记每一个子元素,frame 是每个子元素的坐标位置、辅助算法模型识别模块内部子元素,value 值只有 text 和 image 才有,对应相应的文本值还有图片链接。

获取模块 View 的 DSL

有 3 种方案可以获取到模块 View 的 DSL,分别是:


  1. 从代码仓库中获取;

  2. 从 sketch 视觉稿中生成;

  3. 从浏览器渲染好的页面中获取。


我最后选择了第三种方案,放弃第一个方案是因为代码写法千差万别,很多展现逻辑还包含在 js 代码中,并且还要处理各种 for 循环子 View、style 的映射关系等等,复杂度太高。第二个方案目前集团内已有技术方案 imgcook,这一块的准确率听说还不错,并且一直在持续优化,而最终选择第三个方案的原因是,能 100%准确地还原模块 DSL,并且只需要关注模块最终展现给用户时候的形态,不需要理会过程中开发者做得各种复杂业务逻辑,复杂度相对低很多。

技术方案

在开发流程上,每个模块在开发完成后,都会有对应的模块预览页面。我使用了 puppeteer 模拟真实浏览器,对模块的节点信息进行提取,并保存为规范的 DSL。


清洗 window.getComputedStyle

通过 window.getComputedStyle 获取 DOM 节点的样式,会返回包含 280 个样式属性的对象,如果把每个 DOM 节点的所有 280 个样式属性都存储到 DSL 中,会造成两个问题:


  • DSL 文件冗余,且文件大小过大,解析耗时。

  • 增加算法同学对 DSL 的理解和调整成本。


第一步,隐藏默认属性值;


大部分的样式属性都是默认值,我们首先把默认的样式属性剔除出去。


css{alignSelf: 'auto',...}
复制代码


第二步,剔除无效属性;


开发者常用的样式属性在 20 个左右,有很多的样式是不具备实际效用的,把无效用的样式属性剔除掉,比如说:


{zoom: '1',writingMode: 'horizontal-tb',...}
复制代码


第三步,transform 动态计算


通过 getComputedStyle 拿到的 transform 属性值是一个矩阵方法 matrix(),感兴趣的同学可以去学习理解下 2D 转换矩阵。我们使用 puppeteer 模拟浏览器设置的屏幕宽度是 750,也就是说,得到的 transform 值中 translateX 和 translateY 两个值是以 750 为基准换算得到的一个数字,假如想要在下面描述到的将 DSL 渲染成图时(算法同学期望能模拟各种各样的屏幕尺寸去生成样本),就必须将获取到的 transform 值换算成相应屏幕设备时的值。


# 为了方便算法同学更好使用DSL渲染成图的工具,这里使用python来实现# screenshotShape是一个数组,代表屏幕宽高  [width, height]if 'transform' in style and 'matrix' in style['transform']:    matrix = style['transform'][7:-1].split(',')    translate = list(map(float, matrix[-2:]))    translateResult =  list(map(str, [distance*(screenshotShape[0]/750) for distance in translate]))    matrix[-2:] = translateResult
复制代码


通过以上 3 个步骤,最终得到的 DOM 节点样式属性个数一般维持在 20 个以内,能使输出的 DSL 精简非常多。

DSL 渲染成图片

同样的,我们能基于 puppeteer 去对页面做操作,也能使用它去把 DSL 渲染成目标模块页面,并截图。


首先,建立 DSL 与 HTML 标签的映射关系



其次,如果是 DSL 类型为 Group,就递归遍历里面的所有子元素,以此类推。完整的渲染流程图如下:


ViewModel 动态数据

一个模块,应用到 99 大促、双十一等各种会场,背后样式都是一致的,只有对应的数据不同,动态的数据一般是商品图片和商品信息。


闲鱼有一亿多的商品数据,如果把这商品数据拿过来与 View 一起渲染成模块,每个模块就有了成千上万种展现形态,且贴合算法模型实际识别过程中的输入,既能满足样本数量的要求,也能符合模型实际识别的场景,使模型准确率获得更大地提升。

效果

通过这样一条生成样本的通道,每个模块都能够提供给算法同学几万张质量很高的样本截图,使模型的准确率达到 98%以上。

展望

上述文章描述了如何批量生成样本来帮助解决算法模型对 99 大促和双十一会场中各个模块的识别。


目前,对模块 DSL 的动态调整依赖算法同学对模块的理解,eg.改变圆角 borderRadius 生成更多正向样本,或者增加噪声,eg.删除商品内容节点等生成负向样本,这些操作都需要算法同学对 DSL 进行定制化配置。在未来,我们希望尝试把这部分的工作也交给模型去处理,让模型对样本生成做决策,调整 DSL 的局部,并生成样式更加丰富和可靠的样本。


本文转载自公众号闲鱼技术(ID:XYtech_Alibaba)


原文链接


https://mp.weixin.qq.com/s/CvS4y73Q7hgIAfSzhxEuNg


2019-09-29 08:001528

评论

发布
暂无评论
发现更多内容

区块链编程七大语言,使用最多的竟是Java

Java 程序员 后端

华为java工程师的提升程序员实力的几点建议

Java 程序员 后端

关于计算机面试重难点 之 操作系统,字节架构师有话说

Java 程序员 后端

内卷严重!看看这些java核心资料,提高竞争力,争做拍死别人的后浪

Java 程序员 后端

前华为18A架构师,总结“RabbitMQ”开发手册,已开源

Java 程序员 后端

前后端项目练习(整合Spring)

Java 程序员 后端

动手造轮子:实现一个简单的-AOP-框架

Java 程序员 后端

关于Maven,这几个一定要会的知识点,你真的了解吗?

Java 程序员 后端

力扣前400题解答笔记,全被字节大神整理到了这份文档里

Java 程序员 后端

十面阿里Java岗,看我怎么吊打面试官!

Java 程序员 后端

关于电商秒杀系统中防超卖、以及高性能下单的处理方案简述

Java 程序员 后端

刚拿的字节跳动offer“打水漂”,TikTok不去了,我该何去何从

Java 程序员 后端

剖根问底:Java 不能实现真正泛型的原因是什么?

Java 程序员 后端

华为初面+综合面试(Java技术面)附上面试题

Java 程序员 后端

分布式架构——Gossip 协议详解

Java 程序员 后端

初识Java语言(六)- 多态、抽象类以及接口

Java 程序员 后端

初识Servlet

Java 程序员 后端

北上广深,2020,多少K的Java程序员应该懂高并发多线程和JVM优化

Java 程序员 后端

关于Spring注解容器配置的那些事,掌握这几点,不再难!

Java 程序员 后端

冷门的 Java 应用程序安全沙箱机制了解一下

Java 程序员 后端

创建型模式之建造者模式——链式调用

Java 程序员 后端

别再找了,这就是全网最全的SpringBean的作用域管理!

Java 程序员 后端

别再说你不会-JVM-性能监控和调优了,看完这篇再发言!

Java 程序员 后端

十个超酷的java谋生方式,你喜欢吗?

Java 程序员 后端

几款常见接口管理平台对比

Java 程序员 后端

凭借着这份Spring面试题,我拿到了阿里,字节跳动美团的offer!

Java 程序员 后端

分布式服务下,消息中间件改造

Java 程序员 后端

初次远程面试蚂蚁金服,三面过后本以为凉凉,没想到直接被录取了

Java 程序员 后端

初探DispatcherServlet#doDispatch

Java 程序员 后端

制作Docker镜像,用来编译OpenJDK11源码

Java 程序员 后端

互联网通信云盛会WICC广州站绿色报名通道开启

融云 RongCloud

阿里99大促模型识别背后的样本生成_文化 & 方法_云听_InfoQ精选文章