写点什么

通过人工智能和机器学习实现完全自动化的 5 种方法

  • 2021-06-07
  • 本文字数:1858 字

    阅读完需:约 6 分钟

通过人工智能和机器学习实现完全自动化的5种方法

在人工智能和机器学习领域,测试自动化已经取得了长足的进步。通过引入智能测试自动化工具,可以解决传统测试自动化的难点,从而获得最佳结果。下面分享 5 种通过人工智能和机器学习实现完全自动化的方法,这些方法能够帮助项目团队减少测试工作量,提高测试覆盖率。

1.测试自动化的自修复



测试自动化中的自修复技术解决了测试脚本维护的主要问题,即自动测试脚本在对象属性(包括名称、ID、CSS 等)的每个变更阶段都会中断。测试自动化中的自修复技术在实现过程中使用了动态定位策略,程序可以自动检测到这些变更,并动态地修正它们,无需人工干预。团队可以利用敏捷测试方法中的左移方法,使得过程更加高效,提高工作效率,加速交付。


举个例子,当开发者对 HTML 页面中的对象标识符进行任何更改时,测试用例中的 UI 标识符将自动更改。虽然属性改变了,但人工智能引擎仍然定位这些元素,并根据在源代码中的更改来修改它们。这一自修复技术使开发者不必花费大量时间来识别变更,同时更新 UI。

2.测试脚本的自动生成



自动化测试脚本的开发是一项复杂的工作,需要用到 Java、Python、Ruby 等高技能的编程语言。同时还需要做大量的初始工作,并投入一定的时间和资源。使用自动化脚本进行开发可将测试脚本的生成时间减少 50%。另外,在测试脚本设计过程中加入人工智能和机器学习技术,也能大大简化其设计流程。


目前市面上有各种各样的测试工具,比如通过手动测试用例构建的 selenium 自动化测试脚本,它可以读取测试脚本,并自动生成自动化脚本。该人工智能算法使用自然语言处理,能够理解用户的意图,并在 Web 应用中模拟这些行为。它的优点是可以减少 80% 的测试脚本设计和经历。

3.大量测试数据的有效使用


很多使用敏捷和 DevOps 方法执行持续测试的组织都选择了一种严格的测试方法,并在整个软件开发生命周期中每天进行数次使用,其中包括单元、API、功能、可访问性、集成和其他类型的测试。在执行这些测试用例时,系统将创建大量的测试数据。库存的数据越多,管理人员就越难做出更准确的决定。


通过可视化最不稳定的测试用例和其他需要重点关注的部分,机器学习可以帮助开发者更容易地识别关键的问题区域。此外,通过人工智能和机器学习系统的参与,还可以轻松地对测试数据进行切片、分块和分析,并能够读取模式、量化业务风险和加快手头项目的总体决策过程。


具体来说,在人工智能和机器学习的帮助下,分析人员可以获得以下更好的特性:

  • 测试影响分析

  • 安全漏洞

  • 平台特有缺陷

  • 测试环境不稳定

  • 测试失败的重复模式

  • 应用元素定位器的脆性

4.利用自动视觉验证工具对图像进行测试


当前,在基于图像的测试领域中,自动视觉验证工具得到了越来越多的应用。


软件开发中的视觉测试(也叫 UI 测试)可以确保开发者构建的 Web 或移动应用的 UI 呈现给最终用户,这些工具旨在通过更新 UI 来帮助开发者实现应用的功能。不过当前,大多数正在进行的测试通常难以实现自动化,而是采用人工测试的方式。


人工测试很容易导致一些元素被忽略,要想准确识别这些元素,测试人员可以利用基于机器学习的视觉验证工具。这是一种基于图像的测试注入,它动态地改变了公司在任何系统中提供自动测试服务的方式。测试分析人员可以创建自动检测软件中所有视觉错误的机器学习测试,这样做有助于验证应用的视觉正确性,而无需测试专家将输入隐性地插入到系统中。

5.人工智能搜索


当前,开发者使用的基于人工智能的最新自动化技术是使用 spidering 方法为应用自动编写测试。


开发者需要为自己的 Web 应用提供一些新的人工智能 / 机器学习工具,以便启动抓取。在抓取的过程中,该工具通过截图收集数据,为每个页面下载 HTML 代码,测量复杂,并不断重复运行这些步骤。最后,这一工具会创建一个数据集,并训练机器学习模型,从而理解应用程序的预期模式和行为。


此外,该工具还将其当前阶段与之前观察到的所有模式进行比较。如果有偏差,工具将把这部分标记为测试期间可能出现的 Bug。下一步,开发者需要确认被标记的问题是否确实是 Bug。也就是说,机器学习工具负责 Bug 的检测过程,但是开发者在接受调用之前必须进行最后的确认。

结论


要想在测试中充分利用人工智能和机器学习技术,需要开发者具备一定的机器学习测试算法基础,并且要有战略上的测试方法。同时,还需要拥有一支测试团队,团队需要知道如何将复杂的数据结构分解成能够帮助开发者加强决策过程,并提高总体项目效率和收益的简化表示。


作者介绍:


Mohit Shah,供职于 ImpactQA,高级技术内容营销人员。


原文链接:


https://dzone.com/articles/5-great-ways-to-achieve-complete-automation-with-a

2021-06-07 10:542183

评论

发布
暂无评论
发现更多内容

软件测试100天上岸2-测试必须有策略

和牛

测试 8月月更

证照之星XE重磅发布 制作证件照从未如此简单

懒得勤快

简单WiFi控制小车系统(树莓派+python+web控制界面)

Five

树莓派 8月月更

java 环境的搭建原来如此简单,我这小白看完也学会了,建议收藏【带附件】

CRMEB

数据说|发力数字经济,山东这两座城市如何变道超车?

易观分析

数字经济 山东

mybatis foreach的使用

Geek_5829b6

Java mybatis

《数字经济全景白皮书》绿色金融篇 重磅发布!

易观分析

数字经济 山东

软硬皆施!Github上爆火2022最新Java面试宝典简直总结的太全了!

程序员小毕

Java 程序员 面试 找工作 简历

从阿里云全球实时传输网络GRTN出发,浅谈QOE优化实践

阿里云视频云

边缘计算 直播 边缘云 全球加速

兆骑科创双创赛事,线上直播路演,投融资对接

兆骑科创凤阁

兆骑科创双创服务平台,高层次人才引进,线上直播路演

兆骑科创凤阁

在北京大数据程序员如何立足?

小谷哥

消息队列基本原理和选型对比

C++后台开发

中间件 消息队列 后端开发 C/C++后台开发 C/C++开发

SLF4J多个jar在类路径问题

Geek_5829b6

Java 日志

数据说|济青,两座“数字经济新一线城市”如何发力?

易观分析

数字经济 山东

面试官:你理解的互联网高性能Web架构是咋样的?

程序员小毕

Java 程序员 架构 面试 程序人生

秋招大厂必备面试题!Java八股文背诵版已助569人入职大厂

退休的汤姆

Java、 面经 社招 面试八股文 秋招+

三大云厂商 ARM 架构服务器性能对比

API7.ai 技术团队

AWS API网关 arm架构 云厂商

零基础如何通过前端技术培训学习

小谷哥

前端培训就业后的程序员就业方向有哪些?

小谷哥

Solana上的结算协议龙头,Zebec潜力颇受看好

股市老人

阿里云无影发布生态共荣计划,携手伙伴推动终端算力上云

阿里云弹性计算

阿里云 生态链 无影云电脑

大数据软件开发培训中心有哪些?

小谷哥

服务稳定性保障中的五大误解

华明

运维 SRE 服务监控 稳定性保障

mybatis添加日志并打印sql

Geek_5829b6

Java mybatis

阿里妈妈展示广告引擎新探索:迈向全局最优算力分配

阿里技术

经验分享 算力 性能提升

合合信息技术专家受邀出席RACV2022,探索计算机视觉与图形学未来增量

合合技术团队

计算机视觉 计算机

秒验丨iOS端SDK 集成指南

MobTech袤博科技

xcode iOS SDK 秒验

前端培训机构毕业后在一线城市该注意什么

小谷哥

爆肝!阿里大佬熬夜38天整合的这份Spring Security源码手册我粉了

Java全栈架构师

Java 程序员 面试 程序人生 springsecurity

通过人工智能和机器学习实现完全自动化的5种方法_AI&大模型_Mohit Shah_InfoQ精选文章