写点什么

Amazon Redshift Spectrum 十二大最佳实践(一)

  • 2020-01-13
  • 本文字数:2685 字

    阅读完需:约 9 分钟

Amazon Redshift Spectrum 十二大最佳实践(一)

Amazon Redshift Spectrum 使您能够对存储在 Amazon S3 中的数据运行 Amazon Redshift SQL 查询。利用 Redshift Spectrum,您可以将 Amazon Redshift 的强大分析能力扩展到存储于 Amazon Redshift 本地的数据之外。Redshift Spectrum 提供的多种功能能够扩大您可能实施的战略。例如,它能够扩展 Amazon Redshift 可访问的数据大小,并能让您将计算与存储分离,从而提升混合工作负载用例的处理速度。Redshift Spectrum 还能够提高数据的互操作性,因为您可以从 Amazon Redshift 之外的多个计算平台访问同一 S3 对象。这些平台包括 Amazon AthenaAmazon EMR with Apache Spark、Amazon EMR with Apache Hive、Presto 及可访问 S3 的任何其他计算平台。因此,您无需通过繁琐、耗时的提取、转换、加载 (ETL) 流程,即可查询您的 Amazon S3 数据湖中的海量数据。您还可以连接外部 S3 表与集群本地磁盘上的表。Redshift Spectrum 对数以千计的节点进行复杂的查询优化和扩展处理,从而交付快速的性能。在本博文中,我们收集了 Redshift Spectrum 的 12 大重要最佳实践,并将这些实践分成不同的功能组。这些指南基于我们与 Amazon Redshift 客户的许多交互以及大量直接项目工作。在您开始使用之前,需要遵循以下步骤进行设置。有关开始使用 Redshift Spectrum 的先决条件及步骤的更多信息,请参阅 Amazon Redshift 文档中的Amazon Redshift Spectrum 入门

设置测试环境

要进行测试以验证本博文中概述的最佳实践,您可以使用任何数据集。Redshift Spectrum 支持多种常见数据格式:Text、Parquet、ORC、JSON、Avro 等等。您可以使用数据的原始格式进行查询,也可以根据数据访问模式、存储要求等等将数据转换为更高效的格式。例如,如果您经常访问列的子集,Parquet 和 ORC 等列格式能够仅读取所需列,从而大大降低 I/O。如何转换文件格式不在本博文的探讨范围之内,有关如何转换文件格式的更多信息,请参阅以下资源:


创建外部 schema

您可以遵循以下方法创建名为 s3_external_schema 的外部 schema:


SQL


create external schema s3_external_schema from data catalog database 'spectrumdb' iam_role 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/aod-redshift-role'create external database if not exists;
复制代码


Amazon Redshift 集群和 Amazon S3 中的数据文件必须位于同一 AWS 区域。您可以在 Amazon Redshift、AWS Glue、Athena Data Catalog 或您自己的 Apache Hive 元存储中创建外部数据库。您的 Amazon Redshift 集群需要授权才能访问您的外部数据目录以及 Amazon S3 中的数据文件。您需要引用附加到您集群的 AWS Identity and Access Management (IAM) 角色(例如 aod-redshift-role)来提供授权。有关更多信息,请参阅 Amazon Redshift 文档中的为 Amazon Redshift 创建 IAM 角色

定义外部表

您可以使用 Parquet 文件定义分区的外部表,并使用如下逗号分隔值 (CSV) 文件定义其他非分区的外部表:


SQL


CREATE  external table s3_external_schema.LINEITEM_PART_PARQ (  L_ORDERKEY BIGINT, L_PARTKEY BIGINT, L_SUPPKEY BIGINT, L_LINENUMBER INT, L_QUANTITY DECIMAL(12,2), L_EXTENDEDPRICE DECIMAL(12,2), L_DISCOUNT DECIMAL(12,2), L_TAX DECIMAL(12,2), L_RETURNFLAG VARCHAR(128), L_LINESTATUS VARCHAR(128), L_COMMITDATE DATE, L_RECEIPTDATE DATE, L_SHIPINSTRUCT VARCHAR(128), L_SHIPMODE VARCHAR(128), L_COMMENT VARCHAR(128))partitioned by (L_SHIPDATE DATE)stored as PARQUETlocation 's3://<your-bucket>/<xyz>/lineitem_partition/';
CREATE external table s3_external_schema.LINEITEM_CSV ( L_ORDERKEY BIGINT, L_PARTKEY INT, L_SUPPKEY INT, L_LINENUMBER INT, L_QUANTITY DECIMAL(12,2), L_EXTENDEDPRICE DECIMAL(12,2), L_DISCOUNT DECIMAL(12,2), L_TAX DECIMAL(12,2), L_RETURNFLAG VARCHAR(128), L_LINESTATUS VARCHAR(128), L_SHIPDATE DATE , L_COMMITDATE DATE, L_RECEIPTDATE DATE, L_SHIPINSTRUCT VARCHAR(128), L_SHIPMODE VARCHAR(128), L_COMMENT VARCHAR(128))row format delimitedfields terminated by '|'stored as textfilelocation 's3://<your-bucket>/<xyz>/lineitem_csv/';
复制代码

查询数据

总的来说,Amazon Redshift 通过 Redshift Spectrum 访问存储在 Amazon S3 中的外部表。您可以使用用于其他 Amazon Redshift 表的相同的 SELECT 语法查询外部表。目前,所有外部表均为只读格式。


您必须在您的 SELECT 语句中引用外部表(方法是在表名称前面用 schema 名称做前缀),无需创建表并将其加载到 Amazon Redshift 中。


如希望使用 Redshift Spectrum 执行测试,可从以下两个查询着手。


查询 1


SQL


SELECT  l_returnflag,        l_linestatus,        sum(l_quantity) as sum_qty,        sum(l_extendedprice) as sum_base_price,        sum(l_extendedprice*(1-l_discount)) as sum_disc_price,        sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,        avg(l_quantity) as avg_qty,        avg(l_extendedprice) as avg_priceFROM s3_external_schema.LINEITEM_PART_PARQWHERE l_shipdate BETWEEN '1998-12-01' AND '1998-12-31'GROUP BY l_returnflag, l_linestatusORDER BY l_returnflag, l_linestatus;
复制代码


该查询仅访问一个外部表,可用于突出显示 Redshift Spectrum 层提供的额外处理能力。


查询 2


SQL


SELECT   l_orderkey,         Sum(l_extendedprice * (1 - l_discount)) AS revenue,         o_orderdate,         o_shippriority FROM     customer, orders, s3_external_schema.lineitem_part_parq WHERE    c_mktsegment = 'BUILDING'          AND      c_custkey = o_custkey          AND      l_orderkey = o_orderkey          AND      o_orderdate < date '1995-03-15'          AND      l_shipdate >  date '1995-03-15' GROUP BY l_orderkey, o_orderdate, o_shippriority ORDER BY revenue DESC, o_orderdate LIMIT 20;
复制代码


该查询将三个表连接在一起:customerorders 表是本地 Amazon Redshift 表,而 LINEITEM_PART_PARQ 表是外部表。


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/12-best-practices-for-amazon-redshift-spectrum/


2020-01-13 14:53656

评论

发布
暂无评论
发现更多内容

Nebula Graph 在微众银行数据治理业务的实践

NebulaGraph

数据治理 图数据库 图数据库实战

第二周作业

大熊猫

作业

Eva

产品经理训练营-第二周作业

懒杨杨

Mybatis系列全解(六):Mybatis最硬核的API你知道几个?

潘大壮

Java 后端 mybatis mybatis源码

Mybatis系列全解(七):全息视角看Dao层两种实现方式之传统方式与代理方式

潘大壮

Java 后端 mybatis mybatis源码

Alibaba内部晋升手册面试题集 ,Java岗位

Java架构之路

Java 程序员 架构 面试 编程语言

作业二、作业三

清醒梦境

产品经理训练营-作业二

胡小湖

Hadoop之HDFS 内部机制知多少?

hanke

大数据 hadoop hdfs 开源 数据存储

“区块链+政务”深度融合 开启智慧城市政务新时代

CECBC

大数据

喜报丨京东科技主导的开源项目ShardingSphere荣登报告榜单国人主导开源项目中活跃度第五名!

京东科技开发者

分布式数据库 京东 ShardingSphere

席卷图文学习前端Flex布局

我是哪吒

html 面试 大前端 html/css Flex

MapReduce练习案例2 - 自定义排序

小马哥

大数据 hadoop mapreduce 七日更

滴普技术荟-云原生基座OpenKube开放容器实践(三):理解linux虚拟网络设备bridge

张红珊—第二章作业

zzz

混合云管平台openkube日志系统介绍

第三期(2020-2021)传统行业云原生技术落地调研

York

灵雀云 云原生

惊艳全网!阿里人开源了K8s进阶宝典笔记,从理论到实践!

996小迁

Java 编程 架构 面试 k8s

MapReduce练习案例3 - 自定义分区

小马哥

大数据 hadoop mapreduce 七日更

奥里给,通过这几份PDF,终于拿到了阿里,腾讯等一线大厂的offer

Java架构之路

Java 程序员 架构 面试 编程语言

产品0期-第二周作业

曾烧麦

产品经理训练营

中国将启动国家区块链平台

CECBC

区块链

云原生基座OpenKube日志系统介绍

滴普技术荟-云原生基座OpenKube开放容器实践(四):linux模拟pod并配置上外网

第三周作业 利益相关方排序

Eva

第二次作业&第三次作业

yoki

太牛了!这是什么神仙级的面试pdf(含答案),跳槽大厂不是问题

Java架构之路

Java 程序员 架构 面试 编程语言

产品经理训练营 Week02

柚子君~

极客大学产品经理训练营

区块链技术发展现状

CECBC

区块链

香喷喷!2021最新出炉Java程序员面试全方位贴身指南

比伯

Java 编程 程序员 架构 面试

Amazon Redshift Spectrum 十二大最佳实践(一)_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章