写点什么

Amazon Redshift Spectrum 十二大最佳实践(一)

  • 2020-01-13
  • 本文字数:2685 字

    阅读完需:约 9 分钟

Amazon Redshift Spectrum 十二大最佳实践(一)

Amazon Redshift Spectrum 使您能够对存储在 Amazon S3 中的数据运行 Amazon Redshift SQL 查询。利用 Redshift Spectrum,您可以将 Amazon Redshift 的强大分析能力扩展到存储于 Amazon Redshift 本地的数据之外。Redshift Spectrum 提供的多种功能能够扩大您可能实施的战略。例如,它能够扩展 Amazon Redshift 可访问的数据大小,并能让您将计算与存储分离,从而提升混合工作负载用例的处理速度。Redshift Spectrum 还能够提高数据的互操作性,因为您可以从 Amazon Redshift 之外的多个计算平台访问同一 S3 对象。这些平台包括 Amazon AthenaAmazon EMR with Apache Spark、Amazon EMR with Apache Hive、Presto 及可访问 S3 的任何其他计算平台。因此,您无需通过繁琐、耗时的提取、转换、加载 (ETL) 流程,即可查询您的 Amazon S3 数据湖中的海量数据。您还可以连接外部 S3 表与集群本地磁盘上的表。Redshift Spectrum 对数以千计的节点进行复杂的查询优化和扩展处理,从而交付快速的性能。在本博文中,我们收集了 Redshift Spectrum 的 12 大重要最佳实践,并将这些实践分成不同的功能组。这些指南基于我们与 Amazon Redshift 客户的许多交互以及大量直接项目工作。在您开始使用之前,需要遵循以下步骤进行设置。有关开始使用 Redshift Spectrum 的先决条件及步骤的更多信息,请参阅 Amazon Redshift 文档中的Amazon Redshift Spectrum 入门

设置测试环境

要进行测试以验证本博文中概述的最佳实践,您可以使用任何数据集。Redshift Spectrum 支持多种常见数据格式:Text、Parquet、ORC、JSON、Avro 等等。您可以使用数据的原始格式进行查询,也可以根据数据访问模式、存储要求等等将数据转换为更高效的格式。例如,如果您经常访问列的子集,Parquet 和 ORC 等列格式能够仅读取所需列,从而大大降低 I/O。如何转换文件格式不在本博文的探讨范围之内,有关如何转换文件格式的更多信息,请参阅以下资源:


创建外部 schema

您可以遵循以下方法创建名为 s3_external_schema 的外部 schema:


SQL


create external schema s3_external_schema from data catalog database 'spectrumdb' iam_role 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/aod-redshift-role'create external database if not exists;
复制代码


Amazon Redshift 集群和 Amazon S3 中的数据文件必须位于同一 AWS 区域。您可以在 Amazon Redshift、AWS Glue、Athena Data Catalog 或您自己的 Apache Hive 元存储中创建外部数据库。您的 Amazon Redshift 集群需要授权才能访问您的外部数据目录以及 Amazon S3 中的数据文件。您需要引用附加到您集群的 AWS Identity and Access Management (IAM) 角色(例如 aod-redshift-role)来提供授权。有关更多信息,请参阅 Amazon Redshift 文档中的为 Amazon Redshift 创建 IAM 角色

定义外部表

您可以使用 Parquet 文件定义分区的外部表,并使用如下逗号分隔值 (CSV) 文件定义其他非分区的外部表:


SQL


CREATE  external table s3_external_schema.LINEITEM_PART_PARQ (  L_ORDERKEY BIGINT, L_PARTKEY BIGINT, L_SUPPKEY BIGINT, L_LINENUMBER INT, L_QUANTITY DECIMAL(12,2), L_EXTENDEDPRICE DECIMAL(12,2), L_DISCOUNT DECIMAL(12,2), L_TAX DECIMAL(12,2), L_RETURNFLAG VARCHAR(128), L_LINESTATUS VARCHAR(128), L_COMMITDATE DATE, L_RECEIPTDATE DATE, L_SHIPINSTRUCT VARCHAR(128), L_SHIPMODE VARCHAR(128), L_COMMENT VARCHAR(128))partitioned by (L_SHIPDATE DATE)stored as PARQUETlocation 's3://<your-bucket>/<xyz>/lineitem_partition/';
CREATE external table s3_external_schema.LINEITEM_CSV ( L_ORDERKEY BIGINT, L_PARTKEY INT, L_SUPPKEY INT, L_LINENUMBER INT, L_QUANTITY DECIMAL(12,2), L_EXTENDEDPRICE DECIMAL(12,2), L_DISCOUNT DECIMAL(12,2), L_TAX DECIMAL(12,2), L_RETURNFLAG VARCHAR(128), L_LINESTATUS VARCHAR(128), L_SHIPDATE DATE , L_COMMITDATE DATE, L_RECEIPTDATE DATE, L_SHIPINSTRUCT VARCHAR(128), L_SHIPMODE VARCHAR(128), L_COMMENT VARCHAR(128))row format delimitedfields terminated by '|'stored as textfilelocation 's3://<your-bucket>/<xyz>/lineitem_csv/';
复制代码

查询数据

总的来说,Amazon Redshift 通过 Redshift Spectrum 访问存储在 Amazon S3 中的外部表。您可以使用用于其他 Amazon Redshift 表的相同的 SELECT 语法查询外部表。目前,所有外部表均为只读格式。


您必须在您的 SELECT 语句中引用外部表(方法是在表名称前面用 schema 名称做前缀),无需创建表并将其加载到 Amazon Redshift 中。


如希望使用 Redshift Spectrum 执行测试,可从以下两个查询着手。


查询 1


SQL


SELECT  l_returnflag,        l_linestatus,        sum(l_quantity) as sum_qty,        sum(l_extendedprice) as sum_base_price,        sum(l_extendedprice*(1-l_discount)) as sum_disc_price,        sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,        avg(l_quantity) as avg_qty,        avg(l_extendedprice) as avg_priceFROM s3_external_schema.LINEITEM_PART_PARQWHERE l_shipdate BETWEEN '1998-12-01' AND '1998-12-31'GROUP BY l_returnflag, l_linestatusORDER BY l_returnflag, l_linestatus;
复制代码


该查询仅访问一个外部表,可用于突出显示 Redshift Spectrum 层提供的额外处理能力。


查询 2


SQL


SELECT   l_orderkey,         Sum(l_extendedprice * (1 - l_discount)) AS revenue,         o_orderdate,         o_shippriority FROM     customer, orders, s3_external_schema.lineitem_part_parq WHERE    c_mktsegment = 'BUILDING'          AND      c_custkey = o_custkey          AND      l_orderkey = o_orderkey          AND      o_orderdate < date '1995-03-15'          AND      l_shipdate >  date '1995-03-15' GROUP BY l_orderkey, o_orderdate, o_shippriority ORDER BY revenue DESC, o_orderdate LIMIT 20;
复制代码


该查询将三个表连接在一起:customerorders 表是本地 Amazon Redshift 表,而 LINEITEM_PART_PARQ 表是外部表。


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/12-best-practices-for-amazon-redshift-spectrum/


2020-01-13 14:53793

评论

发布
暂无评论
发现更多内容

单线程、多线程和协程的爬虫性能对比

小小明

Python 爬虫

CloudQuery v1.3.5 上线!

BinTools图尔兹

数据库 oracle 运维 开发工具 dba

用户需求差异化需要更专业的云管理平台 | 演讲实录

BoCloud博云

云计算 多云管理

试着找一下抖音下单的用户路径地图

小匚

产品经理 产品经理训练营

maven打包,常用启动方式

秋天

mavne

又是一些小细节!3面成功入职字节跳动:算法+数据库+中间件+JVM

Java架构之路

Java 程序员 架构 面试 编程语言

MySQL四大属性(特性) 底层实现原理

java_wxid

Java MySQL 数据库 面试 底层实现原理

将word试卷匹配转换为结构化表格

小小明

Python word

KeyChrone-K8使用体验

ITCamel

高并发下的Redis分布式锁

java_wxid

Java redis 高并发 分布式锁 setnx

JVM 诊断之 jps 工具使用

hepingfly

JVM jvm调优 jvm诊断 jps

美团3面(Java后台):NIO+BIO+Zookeeper+线程池+Redis+kafka

钟奕礼

Java 编程 程序员 架构 面试

何止一个惨字形容!水滴Java面试一轮游,壮烈了,问啥啥不会,数据库血崩,我该怎么办?

钟奕礼

Java 学习 编程 程序员 面试

字节跳动5面喜提offer!分享给朋友们面试感受

Java架构之路

Java 程序员 架构 面试 编程语言

Apache Iceberg学习日志

InfoQ_Springup

数据湖

后端服务器网络编程之 IO 模型

Linux服务器开发

后端 网络编程 web服务器 Linux服务器开发 网络io

2021版金三银四Java面试突击手册开源(涵盖p5-p8技术栈),“吊打”面试官的“葵花宝典”

Java 编程 程序员 架构 面试

Hello World !!!

潮湿了我押韵的心情

iOS 面试策略之简历的准备到面试流程

iOSer

ios 面试

重点人员可视化研判分析系统搭建,可视化大屏系统

硬件测试的思考和改进:有道词典笔的高效测试探索

有道技术团队

大前端

批量从Word中提取图片

小小明

Python

Pandas实战案例-冷空气活动寒潮级别分类

小小明

AI技术在小程序生态质量保障方向的落地实践

百度开发者中心

百度智能小程序

支付宝高级研发一二三面题目:CMS+CAS+线程锁+事务+雪崩+Docker

钟奕礼

Java 编程 程序员 架构 面试

爆肝一周总结了一份Java学习/面试自测指南!200+道Java最常见面试题。

Java架构之路

Java 程序员 架构 面试 编程语言

Android内存泄漏检测之LeakCanary2.0(Kotlin版)的实现原理

vivo互联网技术

android kotlin 内存泄漏

MySQL锁等待与死锁问题分析

Simon

MySQL 死锁

程序员:如何写出斗帝级简历?

Java架构师迁哥

Python实现excel公式格式化工具

小小明

Python Excel

HashMap加载因子为什么是0.75?

java_wxid

Java 面试 hashmap HashMap底层原理 加载因子

Amazon Redshift Spectrum 十二大最佳实践(一)_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章