写点什么

如何加速 Python 代码?

  • 2020-04-03
  • 本文字数:2613 字

    阅读完需:约 9 分钟

如何加速 Python 代码?

本文讲述了 5 个提高性能的方法,从使用更好的算法到多处理。

如何加速 Python 代码?

1. 优化代码和算法

一定要先好好看看你的代码和算法。许多速度问题可以通过实现更好的算法或添加缓存来解决。本文所述都是关于这一主题的,但要遵循的一些一般指导方针是:


  • 测量,不要猜测。 测量代码中哪些部分运行时间最长,先把重点放在那些部分上。

  • 实现缓存。 如果你从磁盘、网络和数据库执行多次重复的查找,这可能是一个很大的优化之处。

  • 重用对象,而不是在每次迭代中创建一个新对象。Python 必须清理你创建的每个对象才能释放内存,这就是所谓的“垃圾回收”。许多未使用对象的垃圾回收会大大降低软件速度。

  • 尽可能减少代码中的迭代次数,特别是减少迭代中的操作次数。

  • 避免(深度)递归。 对于 Python 解释器来说,它需要大量的内存和维护(Housekeeping)。改用生成器和迭代之类的工具。

  • 减少内存使用。 一般来说,尽量减少内存的使用。例如,对一个巨大的文件进行逐行解析,而不是先将其加载到内存中。

  • 不要这样做。 听起来很傻是吧?但是你真的需要执行这个操作吗?不能晚点儿再执行吗?或者可以只执行一次,并且它的结果可以存储起来,而不是一遍又一遍地反复计算?

2. 使用 PyPy

你可能正在使用 Python 的参考实现 CPython。之所以称为 CPython,是因为它是用 C 语言编写的。如果你确定你的代码是 CPU 密集型(CPU bound)(如果你不知道这一术语,请参见本文“使用线程”一节)的话,那么你应该研究一下 PyPy,它是 CPython 的替代方案。这可能是一种快速解决方案,无需更改任何一行代码。


PyPy 声称,它的平均速度比 CPython 要快 4.4 倍。它是通过使用一种称为 Just-in-time(JIT,即时编译)技术来实现的。Java 和 .NET 框架就是 JIT 编译的其他著名的例子。相比之下,CPython 使用解释来执行代码。虽然这一做法提供了很大的灵活性,但速度也变得慢了下来。


使用 JIT,你的代码是在运行程序时即时编译的。它结合了 Ahead-of-time(AOT,提前编译)技术的速度优势(由 C 和 C++ 等语言使用)和解释的灵活性。另一个优点是 JIT 编译器可以在运行时不断优化代码。代码运行的时间越长,它就会变得越优化。


PyPy 在过去几年中取得了长足的进步,通常情况下,它可以作为 Python 2 和 Python 3 的简易替换方案。使用 Pipenv 这样的工具,它也可以完美地工作,试试看吧!

3.使用线程

大部分软件都是 IO 密集型,而不是 CPU 密集型。如果你对这些术语还不熟悉的话,请看看下面的解释:


  • IO 密集型(I/O bound):软件主要是等待输入 / 输出操作完成才能工作。在从网络或缓慢的存储中获取数据时,通常会出现这种情况。

  • CPU 密集型(CPU bound):软件占用了大量的 CPU 资源。它使用了 CPU 所有的能力来产生所需的结果。


在等待来自网络或磁盘的应答时,你可以使用多个线程使其他部分保持运行状态。


一个线程是一个独立的执行序列。默认情况下,Python 程序有一个主线程。但你可以创建更多的主线程,并让 Python 在它们之间切换。这种切换发生得如此之快,以至于它们看上去就好像是在同时并排运行一样。



线程是独立的执行序列,共享相同的内存空间


但与其他编程语言不同的是,Python 并不是同时运行的,而是轮流运行。这是因为 Python 中有一种全局解释器锁( Global Interpreter Lock,GIL)机制。这一点,以及 threading 库在我撰写的关于 Python 并发性的文章有详细的解释。


我们得到的结论是,线程对于 IO 密集型的软件有很大的影响,但对 CPU 密集型的软件毫无用处。


这是为什么呢?很简单。当一个线程在等待来自网络的答复时,其他线程可以继续运行。如果你要执行大量的网络请求,线程可以带来巨大的差异。如果你的线程正在进行繁重的计算,那么它们只是等待轮到它们继续计算,线程化只会带来更多的开销。

4. 使用 Asyncio

Asyncio 是 Python 中一个相对较新的核心库。它解决了与线程相同的问题:它加快了 IO 密集型软件的速度,但这是以不同的方式实现的。我将立即坦承我并非 Python 的 asyncio 拥趸。它相当复杂,特别是对于初学者来说。我遇到的另一个问题是,asyncio库在过去几年中有了很大的发展。网上的教程和示例代码常常已经过时。不过,这并不意味着它就毫无用处。如果你有兴趣的话,Real Python 网站有一个不错的 asyncio 指南

5 同时使用多个处理器

如果你的软件是 CPU 密集型的,你通常可以用一种可以同时使用更多处理器的方式重写你的代码。通过这种方式,你就可以线性地调整执行速度。


这就是所谓的并行性,但并不是所有的算法都可以并行运行。例如,简单的将递归算法进行并行化是不可能的。但是几乎总有一种替代算法可以很好地并行工作。


使用更多处理处理器有两种方式:


  1. 在同一台机器内使用多个处理器和 / 或内核。在 Python 中,这可以通过 multiprocessing 库来完成。

  2. 使用计算机网络来使用多个处理器,分布在多台计算机上。我们称之为分布式计算。


这篇关于 Python 并发性的文章侧重于介绍如何在一台机器的范围内扩展 Python 软件的方法。它还介绍了multiprocessing 库。如果你认为这是你需要的资料,一定要去看看。


threading 库不同, multiprocessing 库绕过了 Python 的全局解释器锁。它实际上是通过派生多个 Python 实例来实现这一点的。因此,现在你可以让多个 Python 进程同时运行你的代码,而不是在单个 Python 进程中轮流运行线程。



多处理的可视化


multiprocessing 库和 threading 库非常相似。可能出现的问题是:为什么还要考虑线程呢?答案是可以猜得到的。线程是“轻量”的:它需要更少的内存,因为它只需要一个正在运行的 Python 解释器。产生新进程也还有其开销。因此,如果你的代码是 IO 密集型的,线程可能就足够好了。


一旦你实现了软件的并行工作,那么在使用 Hadoop 之类的分布式计算方面就前进了一小步。通过利用云计算平台,你可以相对轻松地进行扩展规模。例如,你可以在云端中处理大型数据集,并在本地使用结果。使用混合操作的方式,你可以节省一些资金,因为云端中的算力非常昂贵。

总结

总结起来就是:


  • 首先考虑优化你的算法和代码。

  • 如果原始速度可以解决你的问题,请考虑使用 PyPy。

  • 对 IO 密集型软件使用 threading 库和 asyncio

  • 使用 multiprocessing 库解决 CPU 密集型问题。

  • 如果所有这些措施还不够的话,可以利用 Hadoop 等云计算平台进行扩展规模。


作者介绍


Erik-Jan van Baaren,作家、软件 / 数据工程师。


延伸阅读:


https://towardsdatascience.com/how-to-speed-up-your-python-code-d31927691012


2020-04-03 13:343447
用户头像
刘燕 InfoQ高级技术编辑

发布了 1123 篇内容, 共 609.0 次阅读, 收获喜欢 1982 次。

关注

评论 1 条评论

发布
用户头像
好文章,CPU密集运算看来只能通过多进程了.
2020-04-04 12:55
回复
没有更多了
发现更多内容

「Go框架」bind函数:gin框架中是如何绑定请求数据的?

Go学堂

golang 开源 程序员 个人成长

一种基于实时大数据的图指标解决方案

京东科技开发者

大数据 运维 系统架构 开发 图指标

SVN管理工具:Cornerstone 4 激活版

真大的脸盆

svn Mac Mac 软件 SVN客户端

《动手学深度学习--PyTorch》之学习环境搭建

IT蜗壳-Tango

架构实战营第10期毕业设计-秒杀系统

Geek_4db2d5

三月征文活动结果已出炉,快来看看有没有你

InfoQ写作社区官方

热门活动 ChatGPT

Java程序员涨薪必备的性能调优知识点,收好了

三十而立

Java

场景重塑:乐播投屏搭载无影架构,打造“超级投屏空间”

云布道师

无影

硬核!阿里出品2023版Java架构师面试指南,涵盖Java所有核心技能

三十而立

Java java面试

谷歌架构师分享gRPC与云原生应用开发Go和Java为例文档

程序知音

Java 架构 云原生 编程语言 后端

9 个可以快速掌握的 Java 性能调优技巧,必须掌握

三十而立

Java

媒体赞誉丨九科信息入选“第一新声”2022高成长新锐企业榜、RPA高成长企业榜,并受邀参加“2022年高科技高成长年度峰会”

九科Ninetech

机器学习算法(一): 基于逻辑回归的分类预测

汀丶人工智能

数据挖掘 机器学习 数据分析 逻辑回归

架构实战营10期-模块九作业

炮仗

SaaS时代下的我们需要什么样的数据库?

陈飞

户外广告屏为什么会坏?

Dylan

LED 户外LED显示屏

利用 Amazon Managed Blockchain 发展和扩大忠诚度奖励计划(第一部分)

亚马逊云科技 (Amazon Web Services)

人工智能

PyTorch 深度学习实战 | 基于ResNet的花卉图片分类

TiAmo

数据集 PyTorch

面试处处碰壁?不慌,Java核心面试文档.PDF助你披荆斩棘

三十而立

AIGC导航网站推荐

kcodez

人工智能 AIGC Chat ChatGPT

云原生引擎单元测试实践

京东科技开发者

云原生 单元测试 代码覆盖

App Store 新定价机制 - 2023年最全版

37手游iOS技术运营团队

ios iap In App Purchase App Store Connect API app store

"我眼中的ChatGPT"征文获奖作品合集

InfoQ写作社区官方

技术专题合集 热门活动 ChatGPT

得物社区计数系统设计与实现

得物技术

性能优化 重构 稳定性

综合系统清理优化工具:MacCleaner PRO中文激活版

真大的脸盆

Mac Mac 软件 mac系统清理优化软件 清理工具 清理优化

Java并发夺命23问

程序员大彬

Java Java并发 java面试

GPT-4免费无限制使用教程

南城FE

人工智能 AI 前端 ChatGPT

【程序员日记】---当“微服务”遇到了“电饼铛“

京东科技开发者

架构 微服务 系统架构 开发 企业号 3 月 PK 榜

如何构建内部开发者门户:企业参考指南

SEAL安全

企业号 3 月 PK 榜 开发者体验 内部开发者门户

尚硅谷Java真题详解教程发布

小谷哥

如何加速 Python 代码?_AI&大模型_Rrik-Jan van Baaren_InfoQ精选文章