AICon 上海站|日程100%上线,解锁Al未来! 了解详情
写点什么

如何加速 Python 代码?

  • 2020-04-03
  • 本文字数:2613 字

    阅读完需:约 9 分钟

如何加速 Python 代码?

本文讲述了 5 个提高性能的方法,从使用更好的算法到多处理。

如何加速 Python 代码?

1. 优化代码和算法

一定要先好好看看你的代码和算法。许多速度问题可以通过实现更好的算法或添加缓存来解决。本文所述都是关于这一主题的,但要遵循的一些一般指导方针是:


  • 测量,不要猜测。 测量代码中哪些部分运行时间最长,先把重点放在那些部分上。

  • 实现缓存。 如果你从磁盘、网络和数据库执行多次重复的查找,这可能是一个很大的优化之处。

  • 重用对象,而不是在每次迭代中创建一个新对象。Python 必须清理你创建的每个对象才能释放内存,这就是所谓的“垃圾回收”。许多未使用对象的垃圾回收会大大降低软件速度。

  • 尽可能减少代码中的迭代次数,特别是减少迭代中的操作次数。

  • 避免(深度)递归。 对于 Python 解释器来说,它需要大量的内存和维护(Housekeeping)。改用生成器和迭代之类的工具。

  • 减少内存使用。 一般来说,尽量减少内存的使用。例如,对一个巨大的文件进行逐行解析,而不是先将其加载到内存中。

  • 不要这样做。 听起来很傻是吧?但是你真的需要执行这个操作吗?不能晚点儿再执行吗?或者可以只执行一次,并且它的结果可以存储起来,而不是一遍又一遍地反复计算?

2. 使用 PyPy

你可能正在使用 Python 的参考实现 CPython。之所以称为 CPython,是因为它是用 C 语言编写的。如果你确定你的代码是 CPU 密集型(CPU bound)(如果你不知道这一术语,请参见本文“使用线程”一节)的话,那么你应该研究一下 PyPy,它是 CPython 的替代方案。这可能是一种快速解决方案,无需更改任何一行代码。


PyPy 声称,它的平均速度比 CPython 要快 4.4 倍。它是通过使用一种称为 Just-in-time(JIT,即时编译)技术来实现的。Java 和 .NET 框架就是 JIT 编译的其他著名的例子。相比之下,CPython 使用解释来执行代码。虽然这一做法提供了很大的灵活性,但速度也变得慢了下来。


使用 JIT,你的代码是在运行程序时即时编译的。它结合了 Ahead-of-time(AOT,提前编译)技术的速度优势(由 C 和 C++ 等语言使用)和解释的灵活性。另一个优点是 JIT 编译器可以在运行时不断优化代码。代码运行的时间越长,它就会变得越优化。


PyPy 在过去几年中取得了长足的进步,通常情况下,它可以作为 Python 2 和 Python 3 的简易替换方案。使用 Pipenv 这样的工具,它也可以完美地工作,试试看吧!

3.使用线程

大部分软件都是 IO 密集型,而不是 CPU 密集型。如果你对这些术语还不熟悉的话,请看看下面的解释:


  • IO 密集型(I/O bound):软件主要是等待输入 / 输出操作完成才能工作。在从网络或缓慢的存储中获取数据时,通常会出现这种情况。

  • CPU 密集型(CPU bound):软件占用了大量的 CPU 资源。它使用了 CPU 所有的能力来产生所需的结果。


在等待来自网络或磁盘的应答时,你可以使用多个线程使其他部分保持运行状态。


一个线程是一个独立的执行序列。默认情况下,Python 程序有一个主线程。但你可以创建更多的主线程,并让 Python 在它们之间切换。这种切换发生得如此之快,以至于它们看上去就好像是在同时并排运行一样。



线程是独立的执行序列,共享相同的内存空间


但与其他编程语言不同的是,Python 并不是同时运行的,而是轮流运行。这是因为 Python 中有一种全局解释器锁( Global Interpreter Lock,GIL)机制。这一点,以及 threading 库在我撰写的关于 Python 并发性的文章有详细的解释。


我们得到的结论是,线程对于 IO 密集型的软件有很大的影响,但对 CPU 密集型的软件毫无用处。


这是为什么呢?很简单。当一个线程在等待来自网络的答复时,其他线程可以继续运行。如果你要执行大量的网络请求,线程可以带来巨大的差异。如果你的线程正在进行繁重的计算,那么它们只是等待轮到它们继续计算,线程化只会带来更多的开销。

4. 使用 Asyncio

Asyncio 是 Python 中一个相对较新的核心库。它解决了与线程相同的问题:它加快了 IO 密集型软件的速度,但这是以不同的方式实现的。我将立即坦承我并非 Python 的 asyncio 拥趸。它相当复杂,特别是对于初学者来说。我遇到的另一个问题是,asyncio库在过去几年中有了很大的发展。网上的教程和示例代码常常已经过时。不过,这并不意味着它就毫无用处。如果你有兴趣的话,Real Python 网站有一个不错的 asyncio 指南

5 同时使用多个处理器

如果你的软件是 CPU 密集型的,你通常可以用一种可以同时使用更多处理器的方式重写你的代码。通过这种方式,你就可以线性地调整执行速度。


这就是所谓的并行性,但并不是所有的算法都可以并行运行。例如,简单的将递归算法进行并行化是不可能的。但是几乎总有一种替代算法可以很好地并行工作。


使用更多处理处理器有两种方式:


  1. 在同一台机器内使用多个处理器和 / 或内核。在 Python 中,这可以通过 multiprocessing 库来完成。

  2. 使用计算机网络来使用多个处理器,分布在多台计算机上。我们称之为分布式计算。


这篇关于 Python 并发性的文章侧重于介绍如何在一台机器的范围内扩展 Python 软件的方法。它还介绍了multiprocessing 库。如果你认为这是你需要的资料,一定要去看看。


threading 库不同, multiprocessing 库绕过了 Python 的全局解释器锁。它实际上是通过派生多个 Python 实例来实现这一点的。因此,现在你可以让多个 Python 进程同时运行你的代码,而不是在单个 Python 进程中轮流运行线程。



多处理的可视化


multiprocessing 库和 threading 库非常相似。可能出现的问题是:为什么还要考虑线程呢?答案是可以猜得到的。线程是“轻量”的:它需要更少的内存,因为它只需要一个正在运行的 Python 解释器。产生新进程也还有其开销。因此,如果你的代码是 IO 密集型的,线程可能就足够好了。


一旦你实现了软件的并行工作,那么在使用 Hadoop 之类的分布式计算方面就前进了一小步。通过利用云计算平台,你可以相对轻松地进行扩展规模。例如,你可以在云端中处理大型数据集,并在本地使用结果。使用混合操作的方式,你可以节省一些资金,因为云端中的算力非常昂贵。

总结

总结起来就是:


  • 首先考虑优化你的算法和代码。

  • 如果原始速度可以解决你的问题,请考虑使用 PyPy。

  • 对 IO 密集型软件使用 threading 库和 asyncio

  • 使用 multiprocessing 库解决 CPU 密集型问题。

  • 如果所有这些措施还不够的话,可以利用 Hadoop 等云计算平台进行扩展规模。


作者介绍


Erik-Jan van Baaren,作家、软件 / 数据工程师。


延伸阅读:


https://towardsdatascience.com/how-to-speed-up-your-python-code-d31927691012


2020-04-03 13:343014
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 562.0 次阅读, 收获喜欢 1978 次。

关注

评论 1 条评论

发布
用户头像
好文章,CPU密集运算看来只能通过多进程了.
2020-04-04 12:55
回复
没有更多了
发现更多内容

LP流动性挖矿系统开发生态系统详解

开发微hkkf5566

web前端培训React如何原生实现防抖

@零度

前端开发 React

《数字经济全景白皮书》银行财富管理篇 重磅发布

易观分析

理财 银行理财

知名网络安全硬件平台厂商铵泰克加入龙蜥社区

OpenAnolis小助手

开源 网络安全 龙蜥社区 CLA 铵泰克

为什么 SQL 语句使用了索引,但却还是慢查询?

okokabcd

MySQL

ARM64 上的性能怪兽:API 网关 Apache APISIX 在 AWS Graviton3 上的安装和性能测试

API7.ai 技术团队

AWS 网关 arm APISIX

618 大促来袭,浅谈如何做好大促备战

阿里巴巴云原生

阿里云 微服务 高可用 云原生

元宇宙产业投资全景图,快人一步走进元宇宙新时代!

博文视点Broadview

细说腾讯如何做到直播延时降低90%以上方案

C++后台开发

WebRTC CDN 音视频开发 视频直播 直播低延迟

工资管理系统该如何使用?

低代码小观

企业管理 工资 管理系统

defi存币生息理财dapp系统开发逻辑

开发微hkkf5566

Java 对象如何安全的 toString

HoneyMoose

分布式数据对象:超级终端的"全局变量"

OpenHarmony开发者

OpenHarmony

Springcloud Oauth2 HA篇

Damon

微服务架构 安全架构 6月月更

基于模板配置的数据可视化平台

百度Geek说

技术干货 | Linkis1.0.2安装及使用指南

康月牙

开源社区 微众银行 WeDataSphere Linkis 使用实践

kube-apiserver调度器核心实现

申屠鹏会

k8s

Ubuntu20.04设置静态IP

echeverra

Linux 静态IP

数据产品学习-实时计算平台

第519区

实时计算 数据产品 数据开发 大数据平台

评“开发人员不喜欢低代码和无代码的8个理由”

代码制造者

程序员 编程语言 开发 iVX 低代码开发

陕西西安等保测评单位有哪些?在哪里可以查到?

行云管家

西安 等保测评 等保测评机构

低代码分析盘点:银行业低代码应用需要规避两大误区

易观分析

代码 银行

精益产品开发体系最佳实践及原则

阿里云云效

云计算 阿里云 精益开发 产品开发 开发

网络安全等级测评和商用密码应用安全性评估是一回事吗?

行云管家

网络安全 等级保护 商用密码

技术干货 | Linkis实践:新引擎实现流程解析

康月牙

Apache 开源社区 WeDataSphere Linkis 使用实践

大数据培训Flink高频面试题

@零度

flink 大数据开发

喜报 | 旺链科技签约汨罗市文旅体产业项目,打造“链”上数字乡村

旺链科技

区块链 产业区块链 乡村振兴 汨罗市

构建基于React18的电子表格程序

葡萄城技术团队

React 表格 纯前端表格技术

各厂商的数据湖解决方案

五分钟学大数据

数据湖 6月月更

企业数字化转型该如何做?三个融合、三个转换

小炮

后端适用,Apifox接口文档设计和调试教程【工具篇】

Liam

Java 后端 Postman 后端开发 API文档

如何加速 Python 代码?_AI&大模型_Rrik-Jan van Baaren_InfoQ精选文章