写点什么

多模块进行时: 同时使用 RedisGraph 和 RediSearch 模块

  • 2020-03-01
  • 本文字数:2713 字

    阅读完需:约 9 分钟

多模块进行时:同时使用 RedisGraph 和 RediSearch 模块

在 2019 年的 RedisConf 会议上,我演示了一个在 RedisGraph 节点上进行全文 RediSearch 的解决方案。当时讲的有点模糊,但现在,我意识到我们应该解释一下我们是如何做到这一点并发布源代码。



在这个演示中我展示了一个小界面,它支持搜索动物并通过生物分类系统(界、门、类、目等)查看它们之间的关系。全文部分基于维基百科的第一段英文。例如,搜索“宠物猫”和“蓝鲸”,会发现他们都是哺乳动物,而如果搜索“宠物猫”和“雪豹”,则会发现他们都属于同一个科:猫科。


这个演示项目出乎意料地简单,但我应该指出 RediSearch 和 RedisGraph 之间的集成仍处于早期阶段,在编写本文时还没有准备好应用于生产环境。所以,我建议您在了解 RediSearch 和 RedisGraph 的集成将在未来几个月逐渐成熟的前提下,确定此方法是否能够满足您的需求。


让我们再讨论一下如何从源码构建。要完成的第一件事是基于代码库中正确的分支构建 RediSearch 和 RedisGraph。RediSearch 使用的是当前的主分支,而 RedisGraph 是 redisconf 分支。如果您想根据自己的需要构建解决方案,可以从源代码构建这两个模块。RedisGraph 和 RediSearch 的网站上都有关于如何构建的详细说明,这并不困难,只是需要一点时间。


配置模块的位置在 redis.conf 文件中,为了确保在 RediSearch 之前加载 RedisGraph,需要在 redis.conf 文件的模块部分将 RediSearch 的 loadmodule 配置项放在 RedisGraph 的 loadmodule 配置项之前。在完成编辑 redis.conf 之后,需要重启 Redis 服务器让配置生效。


在之前演示的 demo 中,我使用 RedisGraph-bulk-loader 脚本将以下内容从 CSV 加载到 RedisGraph,从而包括了我们收集的数据集。这个数据集只包括哺乳动物,因为其他动物的数据质量较低(非哺乳动物物种很少有好的维基百科描述)。


下面是加载数据的例子:


$ cd redisgraph-bulk-loader/$ python3 bulk_insert.py MAMMALS -q -n /path/to/demo/dataload/Class.csv -n/path/to/demo/dataload/Family.csv -n /path/to/demo/dataload/Genus.csv -n/path/to/demo/dataload/Order.csv -n /path/to/demo/dataload/Species.csv -r/path/to/demo/dataload/IN_CLASS.csv -r /path/to/demo/dataload/IN_FAMILY.csv -r/path/to/demo/dataload/IN_GENUS.csv -r /path/to/demo/dataload/IN_ORDER.csv -ayourpassword1 nodes created with label 'Class'157 nodes created with label 'Family'1272 nodes created with label 'Genus'29 nodes created with label 'Order'5616 nodes created with label 'Species'29 relations created for type 'IN_CLASS'1272 relations created for type 'IN_FAMILY'5616 relations created for type 'IN_GENUS'157 relations created for type 'IN_ORDER'Construction of graph 'MAMMALS' complete: 7075 nodes created, 7074 relationscreated in 0.443749 seconds$ redis-cli -a yourpassword GRAPH.QUERY MAMMALS "CALLdb.idx.fulltext.createNodeIndex('Species','description')"Warning: Using a password with '-a' or '-u' option on the command lineinterface may not be safe.1) (empty list or set)2) (empty list or set)3) 1) "Query internal execution time: 324.970000 milliseconds"
复制代码


(gist:https://gist.github.com/stockholmux/0727a4a784a46f8cb9e8329d393a513a)


在这里,key MAMMALS 包含了我们的整个图表。一些重要的注意事项:


•bulk_insert.py 上的-q 开关非常重要,因为它允许在读取 CSV 时进行智能引用。


•调用一次 redis-cli 对所有节点进行批量索引,从而为全文搜索摄取了 7000 多个文档。


现在让我们启动并运行一个 UI。和几乎所有 Node.js 应用程序一样,我们先安装 npm。安装大概需要几秒钟,因为我们不仅要管理 Node 的服务器端文件。还有前端的 Vue.js 组件。如果你最近没有花很多时间在前端 JavaScript 上,那你大概不能使用一个 FTP 和 HTML 文件来实现这些功能。所幸现代前端确实重视工具,所以我们可以安装 VueCLI(我建议遵循 Vue CLI 入门指南)。


在你的前端工具准备好过后,让我们继续来讲 npm 安装和启动运行前端上:


$ npm run build
复制代码


这将创建我们所有前端文件的 dist 目录。现在我们有数据在 Redis 里,我们的前端文件也准备好启动服务,所以我们可以连接 Redis 服务器:


$ node server.js -p 6379 -a yourpassword -hyourhostOrlocalhost
复制代码


让我们先讨论一下关于我们刚刚打开的这个服务器的一些问题。它构建在 Express.js 上,主要使用 WebSocket 进行通信。我还集成了可视化引擎调试工具,它允许您在单独的浏览器窗口中查看正在执行的命令。你可以把浏览器指向地址:http://localhost:4444


总之,相对于它所实现的功能来说,它非常的简短——只有 75 行代码。我们的解决方案不需要那么长,因为我们实际上所做的就是接受 WebSocket 连接,根据传递的消息运行 Redis 命令,然后将这些消息与结果一起传递回来。Redis(Graph)做了所有复杂的工作。让我们看看正在执行的命令。


为了搜索关键字,我们运行这个命令:


> GRAPH.QUERY MAMMALS"CALL db.idx.fulltext.queryNodes('Species','cat house pet')"
复制代码


这很简单。我们的键是哺乳动物,我们使用一个特殊的语法调用了一个特定的函数,它的第一个参数是我们要查找的节点的标签,另一个参数是实际要搜索的字符串。您可以传递有效的 RediSearch 参数进行查询,但请记住,目前这只是全文本搜索,因此不要使用地理空间、标记或数字子句。


一旦我们确定了我们要比较的两种动物,我们就可以使用一个简单的命令进行查询:


GRAPH.QUERY MAMMALS"MATCH (s:Species)-[]->(x)<-[]-(c:Species) WHERE c.fullname =‘Felis catus’ AND s.fullname = ‘Balaenoptera borealis’ RETURN x.name,labels(x) LIMIT 1"

在 server.js 文件中,这些查询被表示为 JavaScript 模板字符串,没有对用户隐藏,用户输入的字符串被直接插入到输入中进行查询。但如果在生产环境中部署类似这样的东西,就需要小心接收和校验用户输入。

如果打算修改前端代码,请确保编辑的是/src 目录,而不是/dist。编辑之后,您需要再次运行 npmrun build 或使用开发服务器(npmrun serve),该服务器自动编译对前端代码的更改,并将其提供给另一个端口。这是一个非常标准的 Vue.js 和 Bootstrap 应用。唯一真正相关的文件是:

/src/App.js, /src/components/panels.vue and /src/components/search.vue.

以上就是一个简单的功能强大的 demo,集成了两个不同的 Redismodule:RediSearch 和 RedisGraph。我鼓励你使用你自己数据集来体验这个 demo。


本文转载自 中间件小哥 公众号。


原文链接:https://mp.weixin.qq.com/s/dbqatouGwg0P_L9_SR5v_Q


2020-03-01 21:42829

评论

发布
暂无评论
发现更多内容

盘点2020 | 2021,Begin Again !

catcoolion

大前端 盘点2020

盘点2020 | YourBatman 2020年感悟关键词:科比、裁员、管理层、活着

YourBatman

裁员 盘点2020 科比 管理层 活着

NoahTenet诺亚信条软件系统APP开发

系统开发

SpringCloudGateway(一) 概览

Java SpringcloudGateway

IPFS云算力挖矿系统开发详解案例及源码

系统开发咨询1357O98O718

云算力挖矿系统开发详解 云算力APP系统软件开发 云算力模式系统开发源码 云算力软件系统开发定制

IPFS挖矿矿机系统开发方案丨IPFS挖矿矿机源码案例

系统开发咨询1357O98O718

IPFS云算力挖矿系统开发 IPFS算力挖矿系统开发搭建

阿里面试:Mybatis中方法和SQL是怎么关联起来的呢?

田维常

mybatis

犯”集资诈骗罪“、二审判6年的CTO | 法庭上的CTO(21)

赵新龙

CTO 法庭上的CTO

总结2020:5个月出版两本书,日更公众号是一种怎样的体验?

冰河

程序员 程序人生 年终总结

鸟枪换炮,利用python3对球员做大数据降维(因子分析得分),为C罗找到合格僚机

刘悦的技术博客

Python 数据分析 特征选择 降维

IPFS挖矿系统开发详情案例

系统开发咨询1357O98O718

IPFS云算力挖矿系统开发 IPFS算力挖矿软件系统开发

Java多线程编程核心技术

田维常

多线程

互联网大厂有哪些分库分表的思路和技巧?

冰河

分布式数据库 分库分表 分布式存储 数据一致性 数据同步

侵犯著作权、判刑两年半的 CTO |法庭上的CTO(22)

赵新龙

CTO 法庭上的CTO

10次面试,2份offer —— 大龄程序员 2020 求职记录

escray

面试 架构师训练营第 1 期

Spring cloud Gateway(二) 一个Http请求的流程解析

Java 网关

5G与4G的差别及应用

anyRTC开发者

人工智能 android AI 5G WebRTC

生产环境全链路压测建设历程 23:FAQ 3、4 适配改造,目标压力

数列科技杨德华

全链路压测 七日更

架构师训练营第一周作业

Mark

母鸡下蛋实例:多线程通信生产者和消费者wait/notify和condition/await/signal条件队列

叫练

多线程与高并发 Wait lock 线程互斥 await

为了搞清楚类加载,竟然手撸JVM!

小傅哥

JVM 小傅哥 类加载 生命周期 加载机制

开设赌场的CTO | 法庭上的CTO(23)

赵新龙

CTO 法庭上的CTO

被砍伤的技术VP | 法庭上的CTO(24)

赵新龙

CTO 法庭上的CTO

时空大数据与智能技术的时代共舞,百度地图给2020的答案

脑极体

公安警务报警系统,二维码一键定位报警

t13823115967

二维码定位报警系统开发 微警务 二维码定位

AAAI 2021论文:利用深度元学习对城市销量进行预测(附论文下载)

京东科技开发者

数据库 大数据 时序预测

分享一个普通程序员的“沪漂”六年的历程以及感想

程序员老猫

回忆录 经历 年终总结 沪漂 上海买房

散布消极言论被开除的总监 | 法庭上的CTO(25)

赵新龙

CTO 法庭上的CTO

智慧社区综合应用平台搭建,社区管理解决方案

t13823115967

智慧社区管理平台开发 智慧平安社区平台建设

CKLC挖矿矿机系统开发案例介绍

系统开发咨询1357O98O718

CKLC挖矿矿机系统软件开发 CKLC挖矿矿机系统开发 CKLC挖矿矿机APP系统开发

MySQL为Null会导致5个问题,个个致命!

王磊

MySQL MySQL使用

多模块进行时:同时使用 RedisGraph 和 RediSearch 模块_行业深度_翻译自redis.io_InfoQ精选文章