写点什么

MIT 提出可压缩模型的 AI 框架,激励软件代理探索其环境

  • 2020-05-22
  • 本文字数:1853 字

    阅读完需:约 6 分钟

MIT 提出可压缩模型的AI框架,激励软件代理探索其环境

2020年国际学习表征会议(ICLR)接受的两篇论文中,MIT 的研究者提出了激励软件代理(agent)以探索其所处环境,以及修剪算法来提升 AI 应用程序性能的新方法。总的来说,这两种新方案可以促进工业、商业和家用自主机器人的发展;相比现有的竞品,这些方案不需要那么多的计算能力,但同时功能却更强大。

“好奇心”算法

一支团队提出了一种元学习算法,其可以生成 52,000 个探索算法,这些算法可以让代理更深入地探索自己的周围环境。他们探索了其中两种全新算法,并借此改善了一系列模拟任务的学习过程——这些任务包括让月球车登陆,以及用机械手臂抓起蚂蚁大小的机器人等。



图源 Alex Knight


这支团队的元学习系统首先选择一系列高级操作(基本编程,机器学习模型等等)来引导代理执行各种任务,包括记忆以前的输入、比较和对比当前和之前的输入、利用学习方法更改自己的模块等等。元学习系统从共计三十多种操作中,一次最多组合七种不同操作,从而生成了描述之前提到的 52,000 种算法的计算图。


测试所有的算法将花费数十年时间,所以研究者们首先将从代码结构就可以预测出其糟糕性能的算法排除在外。之后他们在一项基本的网格级导航任务中测试了最有希望的候选算法,该任务需要大量的探索,但计算量很小。表现良好的算法被列为新的基准,随后淘汰了一大堆候选算法。


研究团队表示他们使用了四台机器,搜索运行十多小时之后找到了最佳算法。总数超过一百的高性能算法中,前 16 种有用且新颖,性能可以与人工设计的算法相媲美,甚至还会更好。


研究者将前 16 个模型的优秀性能归因于它们都具备的两个探索特性。首先,代理会因为访问一个新地方而获得奖励,因为这样它们就更可能采取新的行动。其次,一个 AI 模型学习预测代理未来的状态,另一个模型则会回顾过去的状态,二者相辅相成以预测现在状态。这样的话,如果预测错误,则二者都会因发现新东西而受到奖励。


因为元学习进程会生成高级计算机代码作为输出,因此可以将这两种算法分解后查看其决策过程。MIT 研究生马丁·施耐德(Martin Schneider)在一份声明中称“人类可以阅读并解释我们生成的算法,但如果想要真正的理解代码,就需要对每一个变量和操作进行推演,并观察它们如何随着时间演变。”他与另一名研究生 Ferran Alet,MIT 计算机科学与电气工程教授 Leslie Kaelbling 及 Tomás Lozano-Pérez 共同撰写了这份研究论文。


“一方面我们借助计算机的能力来评估大量算法,另一方面我们利用了人类解释并改进这些算法的能力,将这二者结合起来设计算法和工作流程是一项很有趣的开放性挑战。”

缩小 AI 模型

在第二份研究中,一支 MIT 团队提供了一种可靠的,可以在资源受限的设备上运行的模型缩小框架。尽管团队还不能解释为何该框架表现如此出色,但不可否认的是,该压缩方法甚至比一些顶尖的压缩方法实现起来更容易且更快。


该框架是“彩票假设(Lottery Ticket Hypothesis)”的产物。论文显示如果在训练过程中能够确定正确的子模型(submodel),那么即使减少了 90%的参数,模型依旧表现良好。研究的合著者,同时也是“彩票假设”的提出者,建议将模型重新“带回”到早期训练阶段,不带任何参数(例:根据已有数据估算模型内部配置变量),然后再重新训练模型。模型修剪方法通常会导致模型精度随着时间变化逐渐降低,但是这种方式却可以将模型精度还原到最初始的状态。


这为更广阔的 AI 研究领域带来了好消息,为解决该领域的可访问性和可持续性问题带来了希望。去年六月(2019 年 6 月),马赛诸塞州大学阿默斯特分校的研究者发布了一项研究,估算出训练并搜索某模型需要花费的电量,这些电量伴随着约 626,000 磅的二氧化碳排放,相当于美国普通汽车服役周期排放量的近五倍。根据最近的一份Synced报告,华盛顿大学用于生成/检测假新闻的 Grover 机器学习模型在两周的训练中花费了 25,000 美元。


MIT 助理教授韩松表示“很高兴看到新的修剪算法和重新训练技术的不断发展”。韩松建立了行业标准修剪算法 AMC,但并未参与到前文提到的这项研究之中。他最近与他人合著了一篇关于如何提升大型模型的 AI 训练效率的论文,论文中提到的模型包含许多可以针对各种平台定制预训练的子模型。 “(该模型)可以让更多的人得以利用高性能 AI 应用程序。”


MIT 博士学生 Alexa Renda 与 MIT 助理教授/博士学生 Jonathan Frankle 合著了该项研究。二人都是 MIT 计算机科学与人工科学实验室(CSAIL)成员。


延伸阅读:


https://venturebeat.com/2020/04/28/mit-presents-ai-frameworks-that-compress-models-and-encourage-agents-to-explore/


2020-05-22 15:351206
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 532.2 次阅读, 收获喜欢 1975 次。

关注

评论

发布
暂无评论
发现更多内容

印象最深的都是关于 IoTConsensus 共识协议?听听新晋 Committer 怎么说!

Apache IoTDB

IoTDB Apache IoTDB

可处理十亿级向量数据!Zilliz Cloud GA 版本正式发布

Zilliz

SaaS 非结构化数据 Milvus Zilliz 向量数据库

Spring为什么需要三级缓存来解决循环依赖

做梦都在改BUG

Java spring 循环依赖

运维堡垒机定义以及作用简单讲解-行云管家

行云管家

堡垒机 运维堡垒机

GitHub上线一天星标99.9K:阿里内部高逼格SpringCloud实战手册

做梦都在改BUG

Java 架构 微服务 Spring Cloud

微信支撑10亿用户背后核心技术:亿级流量Java并发与网络编程实战

做梦都在改BUG

Java 网络编程 高并发 亿级流量

Spring 之依赖注入底层原理

做梦都在改BUG

Java spring 依赖注入

DSW-Gallery使用体验+生成吸引人眼球的新闻标题

六月的雨在InfoQ

模型训练 机器学习PAI DSW-Gallery EasyNLP

AI真的会让程序员失业吗 | 社区征文

五分钟学大数据

三周年征文

如何在Java中做基准测试?JMH使用初体验

做梦都在改BUG

Java JMH 基准测试

我们与AI共生的未来 | 社区征文

TiAmo

人工智能 AI 三周年征文

打造 API 接口的堡垒

Apifox

API API 安全 API 接口

Redis缓存穿透/击穿/雪崩以及数据一致性的解决方案

Java你猿哥

redis ssm 架构师 Java工程师

干掉微服务,换下Dubbo,Spring CloudAlibaba王者降临

做梦都在改BUG

Java 架构 微服务 Spring Cloud spring cloud alibaba

Adobe全新AI工具引关注,生成式人工智能Firefly助力创作更高效、更有创意

Geek_2d6073

在 Rainbond 上使用在线知识库系统zyplayer-doc

北京好雨科技有限公司

云原生 #Kubernetes# rainbond 企业号 4 月 PK 榜

惟实励新,精进臻善!MIAOYUN人人是讲师(第二季)焕新重启

MIAOYUN

学习 企业文化 人才培养 企业培训 学习成长

应用火山引擎DataTester“避坑”,抖音实现用A/B实验快速试错

字节跳动数据平台

大数据 抖音 实验 A/B测试 企业号 4 月 PK 榜

Downie4最常用的几种下载方法,全能网页视频下载工具Downie使用教程

理理

downie 4 Mac 视频下载工具

Mac磁盘清理DaisyDisk4中文版评测:一种优雅而有趣的释放存储空间的方式

理理

磁盘清理 DaisyDisk Mac版下载 DaisyDisk中文版 如何清理Mac磁盘

LilyView for mac(无边框轻量级图片浏览器)

理理

LilyView Mac版 苹果图片浏览软件 LilyView下载

百度APP iOS端包体积50M优化实践(一)总览

百度Geek说

ios xcode 百度 企业号 4 月 PK 榜

LLM 快人一步的秘籍 —— Zilliz Cloud,热门功能详解来啦!

Zilliz

非结构化数据 Milvus Zilliz LLM

2023年MQTT协议的7个技术趋势|描绘物联网的未来

EMQ映云科技

物联网 IoT mqtt 信息技术 企业号 4 月 PK 榜

青海等保测评机构有几家?分别是哪几家?

行云管家

等保 等级测评 青海

AI 能否取代打工人?| 社区征文

阿发

三周年征文

软件测试/测试开发简历写作与面试技巧-VIP内部资料

测试人

面试 软件测试 自动化测试 简历 测试开发

图解云消息服务KooMessage

华为云开发者联盟

云计算 后端 华为云 华为云开发者联盟 企业号 4 月 PK 榜

数据智能服务商奇点云完成近亿元C2轮融资

奇点云

数据中台 融资 奇点云

如何在移动应用开发中,用小程序实践灰度发布策略

FinFish

灰度发布 APP开发 小程序容器 小程序技术

MIT 提出可压缩模型的AI框架,激励软件代理探索其环境_AI&大模型_Kyle Wiggers_InfoQ精选文章