写点什么

Multi-task 多任务学习在推荐算法中应用 (2)

  • 2019-11-28
  • 本文字数:1614 字

    阅读完需:约 5 分钟

Multi-task多任务学习在推荐算法中应用(2)

1. 阿里 ESM2:Conversion Rate Prediction via Post-Click Behaviour Modeling

我们之前介绍过一种基于多任务学习的 CVR 预估模型 ESMM,简单回顾下:



ESMM 中有两个子网络,分别是 Main Task 用于预估 CVR 值,Auxiliary Tasks 用于预估 CTR 值。二个网络共享 Embedding 部分。Loss 分为两部分,一是 CTR 预估带来的 loss,二是 pCTCVR(pCTR * pCVR)带来的 loss。CTCVR 是从 impression 到 buy,CTR 是从 impression 到 click,所以 CTR 和 CTCVR 都可以从整个 impression 样本空间进行训练,一定程度的消除了样本选择偏差。


但对于 CVR 预估来说,ESMM 模型仍面临一定的样本稀疏问题,因为 click 到 buy 的样本非常少。但是其实一个用户在购买某个商品之前往往会有其他的行为,比如把加购物车或者心愿单。如下图所示:



如上图所示,文中把加购物车或者心愿单的行为称作 Deterministic Action (DAction) ,而其他对购买相关性不是很大的行为称作 Other Action(OAction) 。那原来的 Impression→Click→Buy 购物过程就变为 Impression→Click→DAction/OAction→Buy 过程。


ESM2 模型结构:



那么该模型的多个任务分别是:Y1:点击率 Y2:点击到 DAction 的概率 Y3:DAction 到购买的概率 Y4:OAction 到购买的概率


并且从上图也可以看出,模型一共有 3 个 loss,计算过程分别是:


pCTR:Impression→Click 的概率是第一个网络的输出。


pCTAVR:Impression→Click→DAction 的概率,pCTAVR = Y1 * Y2,由前两个网络的输出结果相乘得到。


pCTCVR:Impression→Click→DAction/OAction→Buy 的概率,pCTCVR = CTR * CVR = Y1 * [(1 - Y2) * Y4 + Y2 * Y3],由四个网络的输出共同得到。其中 CVR=(1 - Y2) * Y4 + Y2 * Y3。是因为从点击到 DAction 和点击到 OAction 是对立事件。


随后通过三个 logloss 分别计算三部分的损失:



最终损失函数由三部分加权得到:



2. YouTube:Recommending What Video to Watch Next: A Multitask Ranking System


1)视频推荐中的多任务目标,比如不仅需要预测用户是否会观看外,还希望去预测用户对于视频的评分,是否会关注该视频的上传者,否会分享到社交平台等。


2)偏置信息。比如用户是否会点击和观看某个视频,并不一定是因为他喜欢,可能仅仅是因为它排在推荐页的最前面,这就会导致训练数据产生位置偏置的问题。


模型结构:



从上图可知,整个模型分为预测两大类目标,分别是:


engagement objectives:主要预测用户点击和观看视频的时长。其中通过二分类模型来预测用户的点击行为,而通过回归模型来预测用户观看视频的时长。


satisfaction objectives:主要预测用户在观看视频后的反馈。其中使用二分类模型来预测用户是否会点击喜欢该视频,而通过回归模型来预测用户对于视频的评分。


模型中有两个比较重要的结构:Multi-gate Mixture-of-Experts (MMoE)和消除位置偏置的 shallow tower。


MMoE 的结构为:



shallow tower 的结构为:



通过一个 shallow tower 来预测位置偏置信息,输入的特征主要是一些和位置偏置相关的特征,输出的是关于 selection bias 的 logits 值。然后将该输出值加到子任务模型中最后 sigmoid 层前,在预测阶段,不考虑 shallow tower 的结果。值得注意的是,位置偏置信息主要体现在 CTR 预估中,而预测用户观看视频是否会点击喜欢或者用户对视频的评分这些任务,是不需要加入位置偏置信息的。

3. 知乎推荐页 Ranking 模型

多目标模型,预测的任务包括点击率、收藏率、点赞率、评论率等等,共设计 8 个目标。从性能方面的考虑,我们将底层 embedding 权重设置成共享的, 最后一层根据不同的目标进行加权训练。


  1. 美图推荐排序多任务

  2. 模型结构:



参考文献:


https://arxiv.org/abs/1910.07099


https://www.jianshu.com/p/c06e9ed08dd1


https://www.jianshu.com/p/2f3dbbfc16a6


https://www.infoq.cn/article/g95hu67a4WheikGu*w9K


https://www.jiqizhixin.com/articles


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/91285359


2019-11-28 08:001596

评论

发布
暂无评论
发现更多内容

既要增长又要人效,零售人准备好接受老板的灵魂拷问了吗

Kyligence

数据分析 零售行业

基于无监督训练SimCSE+In-batch Negatives策略有监督训练的语义索引召回

汀丶人工智能

人工智能 自然语言处理 语义搜索 搜索推荐系统

openGauss赋能企业核心场景应用 | 华为全联接大会2022专题回顾

daydayup

openGauss内核分析(二.一):简单查询的执行

daydayup

语义检索系统:基于Milvus 搭建召回系统抽取向量进行检索,加速索引

汀丶人工智能

自然语言处理 nlp 搜索推荐系统 语义搜索系统 向量搜索

文本 Embedding 基本概念和应用实现原理

Dify

技术分享 Embedding word embedding

活动预告 | 中国数据库联盟(ACDU)中国行第二站定档杭州,邀您探讨数据库技术与实践!

墨天轮

数据库 oracle postgresql AntDB oceanbase

openGauss数据库从3.0.0升级到3.1.0操作实践

daydayup

语义检索系统之排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练的单塔模型

汀丶人工智能

人工智能 自然语言处理 排序算法 语义搜索 搜索推荐系统

Sprint Boot学习路线4

小万哥

Java spring 微服务 Spring Cloud Spring Boot

openGauss的SQL引擎在3.1.0版本中做了哪些优化?

daydayup

金奖方案 | 一专多能、傲视寰宇,南大通用GBase8c数据库牛在哪里?

daydayup

java代码加壳加密工具 jar-protect

车江毅

2023-08-02:给定一棵树,一共有n个点, 每个点上没有值,请把1~n这些数字,不重复的分配到二叉树上, 做到 : 奇数层节点的值总和 与 偶数层节点的值总和 相差不超过1。 返回奇数层节点分配

福大大架构师每日一题

福大大架构师每日一题

面部表情识别的挑战和前景

数据堂

openGauss —— 智能优化器之基数估计

daydayup

openGauss内核荣获中国首个国际CC EAL4+级别认证

daydayup

这个Python项目让古诗变得更易读,看完《长安三万里》惊艳了!

程序员晚枫

Python 拼音 长安三万里 古诗词

“数智新应用”不再是口号,看汽车、医药、制造企业如何突出重围?

Kyligence

数智化转型

阿里云出品—高分计算机好书推荐榜

穿过生命散发芬芳

计算机图书

数据库迁移系列】从MySQL到openGauss的数据库对象迁移实践

daydayup

Amazon Aurora Serverless v2 正式发布:针对要求苛刻的工作负载的即时扩展

亚马逊云科技 (Amazon Web Services)

MySQL

重磅更新 | 大幅提升数据集命中预期;AI 联网搜索能力也来了!

Dify

AI技术 开源软件 LLMOps

面部表情识别的技术实现

数据堂

openGauss内核分析(二.二):简单查询的执行

daydayup

如何利用 AI 在 5 分钟批量产出 100 篇 SEO 文章?

Dify

批量任务 SEO AI技术实践 LLMOps

语义检索系统:基于无监督预训练语义索引召回:SimCSE、Diffcse

汀丶人工智能

自然语言处理 nlp 向量检索 语义检索 搜索推荐系统

Dify.AI 用户直面会总结:Embedding 技术与 Dify 数据集设计/规划

Dify

开源项目 AI技术实践 LLMOps

AI大模型之花,绽放在鸿蒙沃土

脑极体

鸿蒙 AI

Multi-task多任务学习在推荐算法中应用(2)_文化 & 方法_Alex-zhai_InfoQ精选文章