开工福利|免费学 2200+ 精品线上课,企业成员人人可得! 了解详情
写点什么

如何训练智能体 Agent 玩毁灭战士 ViZDoom?

  • 2018-06-24
  • 本文字数:3441 字

    阅读完需:约 11 分钟

前言

毁灭战士(Doom),是由 ID Software 开发的第一人称射击游戏,是第一人称射击游戏的开拓者。ViZDoom 是基于 Doom 游戏的人工智能研究平台,主要针对的是深度强化学习的研究。ViZDoom 平台允许人工智能 Bot 使用游戏图像信息进行对战,与传统游戏内置 Bot 的区别在于,传统游戏内置 Bot 对整个游戏的信息都是知道的。而基于人工智能的 Agent 获得的游戏信息和人是相同的,需要不断地探索地图及执行相应的行动。本节主要介绍 ViZDoom 中的两个场景:射击场景,使用了 Deep Q-learning 算法;收集医药箱场景,使用了 Policy Gradients 算法。两个场景如下图所示:

在射击场景中,怪物随机地出现在界面的一端,智能体有左、右移动和射击三个动作,怪物只要被击中一次,就会被杀死。当怪物被杀死或执行100 次行动后怪物还没被杀死,则游戏结束。当怪物被杀死,智能体得到101 奖励分数;当执行射击后,怪物没有被击中,智能体得到-5 分的奖励;当执行向左或向右行动后,怪物还在存活,智能体得到-1 分的奖励。

在收集医药箱的场景中,整个地图是矩形的,地面上是酸性的腐蚀液体,液体会周期性地腐蚀智能体的生命值。地图上随机分布着一些医药箱,并且会时不时地出现一些新的医药箱。智能体为了在地图上生存下去,需要捡起医疗包,回复生命值。当智能体死亡或时间到了,游戏结束。智能体有三个行动,向左、向右及前进。每个行动后,如果智能体生存下来,获得1 奖励分数,如果死亡获取100 惩罚分数。

本文主要基于ViZDoom 中的两个场景,讲解强化学习的基本思想,Q-Learning 算法,Deep Q-Learning 算法如何应用于射击场景及Policy Gradient 算法如何应用于收集医药箱场景。

强化学习

强化学习是机器学习的一个重要分支,目前已经广泛应用于游戏博弈,机器人控制,自动驾驶,人机对话,优化调度等领域。目前,常使用的深度强化学习算法主要有Deep Q-learning, Policy Gradients, Actor Critic, and PPO(Proximal Policy Optimization)。强化学习的基本思想为在一个环境中,智能体(agent)不断地和环境交互,执行不同的行动,然后获取到相应的奖励。这样,智能体在不断的尝试过程中,学习到完成目标的最优策略,从而获取到最高的累积奖励。

强化学习的架构中主要包含的元素为:智能体(agent),环境(env),状态(state)行动(action)及奖励(reward)。如下所示:

上图中环境(env)为超级玛丽昂这个经典游戏(Super Mario);智能体(agent)可以认为是一个AI 机器人,在不断尝试玩这个游戏,实现智能体的自我进化;状态(State)为智能体(Super Mario Bros)在特定时间点的游戏界面中的位置信息,可以认为是一张游戏界面的截图;行动(action)为智能体根据当前的状态信息,所采取的动作,比如上、下、左、右、跳,相当于智能体和环境在进行交互操作;当智能体执行完动作后,智能体会从当前状态转移到下个状态,即游戏的下一帧;奖励(reward)为智能体执行完动作后获得的分数,比如执行完向前动作后,如果智能体不死,则得分加1。强化学习的基本思想为智能体能够最大化期望的累积奖励,用数学公式可表示为:

Q-Learning

Q Learning 主要用 Q Table 记录状态 s 下采取不同行动后,得到将来的期望奖励。如下所示:

其中,图中的每个小方格表示智能体的状态,共有5*5=20 种状态,对应的每个状态智能体可采取4 个行动,为向上,向下,向左,向右移动,如果为0 表示不可以移动。这样依据状态和行动,可生成表格Q-Table,每个单元格中的分数表示对状态采取对应行动后产生最大期望奖励的度量值。表格中的4 列,分别表示向左,向右,向上,向下移动;表格中的每行表示智能体的状态。对应于上节提到的老鼠吃奶酪的游戏,生成Q-Table 后,选择对应状态的行,得分最高的行动。Q-Learning 算法的主要目的是能够学习得到Q-function,如下所示:

Q-function 以状态和行动作为输入参数,返回输入状态对应的期望累积奖励。Q-Learning 算法通过迭代化地优化 Q-Table 得到 Q-function,算法的学习流程如下所示:

Deep Q-Learning

Q-Learning 算法主要是通过不断更新 Q-Table 来学习到优化的 Q-function。但是,对于大的智能体状态空间,比如说围棋,射击游戏,很难定义和更新 Q-Table,Q-Learning 算法将不起作用。Deep Q-Learning 算法,可对智能体的状态,通过神经网络算法,来逼近该状态下执行 action 后的 Q-Value 值。如下所示:

其中,Deep Q 的输入为状态信息,可以是一系列图片,输出为执行不同动作后,Q 值的期望。为了更好地利用观测到的经验数据,训练 DQN 的时候常采用经验回放机制 Experience Replay,经验回复机制主要能够解决两个方面的问题,一个是避免网络忘掉以前学到的经验信息,二是神经网络的训练数据是独立分布的,而强化学习生成的数据一般是序列化的,通过经验回放机制可以打破这种顺序结构。经验回放机制如下所示:

其中,构建一个 ReplyBuffer 数据结构,把智能体和环境交互的信息(s,a,r,s’)放入 Buffer 中,然后随机采样生成 Batch 的训练数据,输入 DQN 网络中。DQN 的优化目标,如下所示:

射击场景中,数据预处理如下所示:

其中,首先读取游戏界面图像,为了减少训练数据大小,经过图像预处理,把游戏图像转换成 84*84 大小的灰度图片;然后,为了处理智能体所处状态的时序变化,比如移动方向,把四张预处理后的图像堆叠起来,组成 84*84*4 大小的训练数据。

射击场景使用的 Deep Q-learning 的网络模型结构如下图所示:

其中,使用了 3 个卷积网络,每个卷积特征层的大小为 20*20*32,9*9*64,3*3*128;然后,经过全链接层,最后输出执行每个 action 行动后的 Q 值。损失函数的计算方式如下所示,其中 Qtarget 可基于经验回放的方式和当前 action 的奖励,由 Q-leaning 中 Q 值的更新方式计算得到。

复制代码
# Q is our predicted Q value.
self.Q = tf.reduce_sum(tf.multiply(self.output, self.actions_), axis=1)
# The loss is the difference between our predicted Q_values and the Q_target
# Sum(Qtarget - Q)^2
self.loss = tf.reduce_mean(tf.square(self.target_Q - self.Q))

Policy Gradient

Deep Q-Learning 是基于值的强化算法,而 Policy Gradients 是基于策略的强化算法,目标是能够学习到策略方程 policy function,直接实现智能体状态到行动的映射,优化的目标为策略方程π。在强化学习中有两种类型的策略:确定性策略和随机性策略。确定性策略使用在确定性的环境中,智能体执行完行动后有确定性的输出;随机性策略是输出智能体在当前状态,选择不同 action 的概率分布,随机性策略主要用于非确定性环境。

使用策略梯度算法主要有三个优点,第一:策略梯度算法有较好的收敛性,策略梯度算法会沿着梯度方向更新策略方程里面的参数,每个迭代下参数更新平稳,算法收敛性会比较好。第二:策略梯度算法在高维的 action 空间更有效果,策略梯度会直接根据根据智能体的状态输出要执行的 action,不需要计算 Q 值。第三:策略梯度算法可以适用于非确定性环境。

策略梯度算法的主要思想为通过优化θ,改变策略的概率分布,从而使得智能体能取得高的期望奖励,优化方式如下所示:

收集医药箱的场景的数据预处理方式类似于射击场景,模型结构如下所示:

复制代码
#与射击场景的模型的差异在于,输出为该状态下执行 action 的概率分布,如下所示:
self.action_distribution = tf.nn.softmax(self.logits)
#损失函数计算如下所示,其中,discounted_episode_rewards_ 为该状态下的累积奖励,logits 为模型输出的 logist 值,actions 为对应状态下选择执行的行动。
self.neg_log_prob = tf.nn.softmax_cross_entropy_with_logits_v2(logits = self.logits, labels = self.actions)
self.loss = tf.reduce_mean(self.neg_log_prob * self.discounted_episode_rewards_)

总结

本文首先介绍了 Doom 游戏的人工智能研究平台 ViZDoom,包括射击场景和医疗包收集场景;介绍了强化学习的基本思想,包括智能体,环境,状态,行动及奖励。然后,讲解了强化学习中常用的三个算法 Q-Learning,Deep Q-Learning,Policy Gradient;应用 Deep Q-Learning 于射击场景;应用 Policy Gradient 于医药包收集场景。用户可把强化学习应用到游戏博弈,机器人控制,自动驾驶,人机对话,优化调度等工业领域中的相关场景。

参考 **** 文献

[1] https://simoninithomas.github.io/Deep_reinforcement_learning_Course .

作者简介

武维(微信:allawnweiwu):博士,现为 IBM 架构师。主要从事深度学习平台及应用研究,大数据领域的研发工作。

2018-06-24 11:241808

评论

发布
暂无评论
发现更多内容

你不知道的浏览器Console玩法

Kevin_913

前端 控制台 调试工具

Dapp钱包智能合约链上质押模式系统开发

l8l259l3365

记一次 TiDB v7.1 版本生产环境的完整搭建流程

TiDB 社区干货传送门

7.x 实践

mac电脑版多协议远程管理软件:Termius激活中文版

胖墩儿不胖y

SSH SSH工具 Mac软件 ssh客户端

NFT链游系统技术开发/NFT元宇宙链游开发/Defi/应用DAPP

V\TG【ch3nguang】

云起无垠典型案例入选《2023软件供应链安全洞察》报告

云起无垠

TiDB实践安装及性能测试(上)

TiDB 社区干货传送门

安装 & 部署 性能测评 6.x 实践

玩转视图变量,轻松实现动态可视化数据分析

观测云

数据分析 可观测性 数据可视化

WinX HD Video Converter for mac (视频格式转换器) 6.8.1激活版

mac

苹果mac Windows软件 视频转换器 WinX HD Video Converter

达芬奇DaVinci Resolve Studio 18 密钥激活资源最新

mac大玩家j

Mac软件 达芬奇18 视频调色工具

一步步带你剖析Java中的Reader类

华为云开发者联盟

Java 开发 华为云 华为云开发者联盟

新品研发协同平台,助力快消企业新品上市成功!

赛博威科技

数字化转型 新产品 茅台 产品研发

正式官宣|集成无界·RestCloud零代码集成自动化平台即将发布

RestCloud

便携式ECG方案介绍

华秋电子

支持信创的数据安全运维平台哪个好?咨询电话多少?

行云管家

信创 数据安全 国产 数据安全运维

卷不动的IT从业人的新赛道在哪里?

小魏写代码

Hutool中那些常用的工具类和实用方法 | 京东云技术团队

京东科技开发者

hutool java工具类 企业号10月PK榜

初识搜索:百度搜索产品经理的第一课

百度Geek说

百度搜索 企业号10月PK榜 搜索产品经理

数字孪生智慧钢厂 Web3D 可视化管理平台

2D3D前端可视化开发

5G 物联网 可视化 数字孪生 智慧钢厂

TiDB实践安装及性能测试(下)

TiDB 社区干货传送门

迁移 管理与运维 备份 & 恢复 6.x 实践

HAProxy安装及搭建tidb数据库负载均衡服务实战

TiDB 社区干货传送门

7.x 实践

Proto-Mock:你的 Protobuf 随机数据生成利器

Geek_ianp87

前端 Node protobuf

通过NGINX搭建TiDB负载均衡

TiDB 社区干货传送门

安装 & 部署

基础软件是世界的事业 | 论数据库开源的力量

TiDB 社区干货传送门

抢先体验!星河社区ERNIE Bot SDK现已支持文心大模型4.0

飞桨PaddlePaddle

开发工具 文心大模型 星河社区

数据安全法里面的数据是指什么?具体条例内容是什么?

行云管家

数据安全 数据安全法 数据运维 数据安全运维

在Kubernetes中实现gRPC流量负载均衡

树上有只程序猿

golang Kubernetes

git 拉取分支后不想合并了

图颜有信

如何训练智能体Agent玩毁灭战士ViZDoom?_语言 & 开发_武维_InfoQ精选文章