写点什么

如何用机器学习生成拟真人脸图片?

——使用 DCGAN 技术生成真实人脸

  • 2019-09-09
  • 本文字数:1748 字

    阅读完需:约 6 分钟

如何用机器学习生成拟真人脸图片?

本文中的用于生成虚拟人脸图片的机器学习网络是 Generative Adversarial Networks(GAN)生成对抗网络中的一个应用,Deep Convolutional Generative Adversarial Networks (DCGAN)深度卷积生成式对抗网络。



首先来看一个问题,以下这些面孔中,有哪些是真实存在的?



他们是真的吗?


答案将在文末揭晓,首先先让我们看看如何利用对抗网络生成的虚拟人脸。


深度卷积生成式对抗网络(DCGANs)


作者另一篇文章,利用对抗网络完成卡通图片生成,包含了对抗网络 GAN 的一些基本知识,方便初学者查看。作者同时将这个研究项目分享到了GitHub,以及可以云端运行的Kaggle


本文中提到的人脸图片生成与卡通图片生成技术都是依据 Redford 等人在 2015 年发布的论文《深度卷积生成网络的无监管学习》。具体模型大致如下



作为机器学习过程中重要的一环,原始数据集,作者选用了CelebA中真实明星照片,并进一步进行裁剪加工为 128x128 大小、仅留下人脸部分的照片。


这项实验研究的目的可以描述为,通过机器学习的不断训练,使生成器与判别器形成一种类似“竞争”的关系,两个网络互相抗衡损失,最终到达一个完美的平衡点。那么对于下列损失函数来说,这样的平衡点在哪里呢?


def model_loss(input_real, input_z, output_channel_dim):    g_model = generator(input_z, output_channel_dim, True)
noisy_input_real = input_real + tf.random_normal(shape=tf.shape(input_real), mean=0.0, stddev=random.uniform(0.0, 0.1), dtype=tf.float32) d_model_real, d_logits_real = discriminator(noisy_input_real, reuse=False) d_model_fake, d_logits_fake = discriminator(g_model, reuse=True) d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)*random.uniform(0.9, 1.0))) d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake))) d_loss = tf.reduce_mean(0.5 * (d_loss_real + d_loss_fake)) g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake))) return d_loss, g_loss
复制代码


在理想的状态下,最终的均衡状态应满足:


  1. 生成的样本图像最够真实并且接近于真实图像分布。

  2. 判别器收敛到 0.5-50%的正确率使得判别器分辨不出样本是生成的还是真实的。

  3. 生成器收敛到 1.0-100%的正确率使得所有生成图片都足够真实,可以骗过判定器。


训练过程


根据最终状态可以得出以下的超参数:


DATASET_SIZE = 100000IMAGE_SIZE = 128NOISE_SIZE = 100LR_D = 0.00004LR_G = 0.0002BATCH_SIZE = 64EPOCHS = 60BETA1 = 0.5WEIGHT_INIT_STDDEV = 0.02EPSILON = 0.00005
复制代码


经过 60 个训练周期后,最终损失情况如下:



训练结果并不完美,但是依然可以看出判别器的损失接近于 0.5,而生成器的损失平均接近于 1.0,并且,随着训练周期的增加,生成的样本图片质量也有显著的提高。这 60 个训练周期是在特斯拉 K80 GPU(Kaggle 云端)上进行的,总共运行时长约为 100 小时。


结论


最终生成的的高保真的样本图片如下,



大部分的人脸看起来拟真度都相当的高,只有一少部分显得有些畸形,在眼镜等一些细节上也有些瑕疵,但总体来说,在考虑训练过程中资源有限的情况下,它的表现还是非常令人满意的。


展望未来


通过这个人脸生成的研究项目,可以证明使用生成对抗网络生成逼真的人脸图片是绝对有可能的。即使是在这种训练资源有限的情况下,还是可以生成足以以假乱真的图片。那么在更大、更先进的研究实验室里,完全可以生成质量更高、分辨率更清晰的图片。


题外话,科技的发展让这些拟真度非常高的虚假人脸生成更加容易,在面对这些面孔的时候我们也应该抱有更高的警戒心。


回到文初的问题,这几张图片全部都是由尖端科技 StyleGAN 生成的虚假照片。


原文链接:


Face Generator - Generating Artificial Faces with Machine Learning


2019-09-09 14:534084
用户头像

发布了 229 篇内容, 共 157.0 次阅读, 收获喜欢 227 次。

关注

评论

发布
暂无评论
发现更多内容

大数据培训如何使用DPM规划用户画像

@零度

大数据 dpm

招聘 | 上班轰趴,下班狼人杀,天天招人,怕是要发!

Alluxio

面试 程序员人生 招聘 互联网热点 Alluxio

《数字经济全景白皮书》证券期货用户数字化篇 重磅发布

易观分析

证券 期货

2022年4月线上终端药品增长迅猛,市场政策合规进程加快

易观分析

医药类

为什么你的网站需要搭建在线帮助中心?

小炮

如何撰写数据中台蓝图方案

agileai

数据中台 企业服务总线 主数据平台 数据分析平台 蓝图方案

为企业业务流程提速的BPM

力软低代码开发平台

英特尔计划建造浸没式实验室,帮助高功率芯片快速降温

BeeWorks

java培训 | 零基础学习java开发的学习方法有哪些

@零度

Java 学习方法

【LeetCode】火柴拼正方形Java题解

Albert

LeetCode 6月月更

深度操作系统20.6正式发布!

深度操作系统

开源 深度操作系统 deepin20.6 新版本 深度

2022 支付宝五福 |“联机版”打年兽背后的网络技术 RTMS

阿里巴巴终端技术

客户端 网络技术 网络通信

6 月直播 7 场干货全剧透!今天:飞腾CPU调优原理及方法 | 第 19 期

OpenAnolis小助手

cpu 直播 sig 龙蜥大讲堂 飞腾

相约龙蜥,开源一“夏”!2022编程之夏ASoC开始报名了

OpenAnolis小助手

阿里巴巴 开源项目 龙蜥社区 高校学生 技术项目

成本节省 50%,10 人团队使用函数计算开发 wolai 在线文档应用

Serverless Devs

Serverless wolai

“东数西算”与“双碳”双驱力叠加,新华三争当“全能型选手”

BeeWorks

移动端异构运算技术-GPU OpenCL编程(进阶篇)

百度Geek说

2022云原生网络趋势 | K8s托管整个基础设施、多云、边缘计算、安全等场景,将云原生网络带向新战场

York

云原生 网络 Kube-OVN cni 6月月更

各国儿童节时间是不一样的

清林情报分析师

数据可视化 知识图谱 儿童节

Docker下RabbitMQ延时队列实战两部曲之一:极速体验

程序员欣宸

RabbitMQ 5月月更 RabbtiMQ延时队列

做数据时代的加油站,ShardingSphere 为易车数据库架构演进提供新动力

SphereEx

Apache 数据库 开源 ShardingSphere SphereEx

Jetpack Composes 入门

坚果

6月月更

CPU利用率从10%提升至60%:中型企业云原生成本优化实战指南

星汉未来

运维 云原生 IT成本 星汉未来 FinOps

【高并发】你知道吗?大家都在使用Redisson实现分布式锁了!!

冰河

并发编程 多线程 高并发 异步编程 6月月更

Redis 忽然变慢了如何排查并解决?

码哥字节

redis Redis 核心技术与实战 6月月更

【直播回顾】参与ArkUI,共建OpenHarmony繁荣生态

OpenHarmony开发者

Open Harmony

RxJS系列01:响应式编程与异步

代码与野兽

6月月更

运维领域告警智能定级原理探索(含详细实验报告)

云智慧AIOps社区

运维 安全 监控 告警

WASM VS EVM,波卡的选择预示了公链未来

One Block Community

区块链 公链 波卡生态

幸运哈希算法竞猜游戏开发特点分析(成熟方案)

开发微hkkf5566

定档615 | 数字化基础软件自主创新分享周即将来袭,点击获取“通关密钥”!

网易数帆

大数据 云原生 基础软件 数字化转型 自主创新

如何用机器学习生成拟真人脸图片?_AI&大模型_Greg Surma_InfoQ精选文章