写点什么

基于 Elastic Stack 的日志分析系统

  • 2019-11-07
  • 本文字数:1822 字

    阅读完需:约 6 分钟

基于Elastic Stack的日志分析系统

Elastic Stack 简介

Elastic Stack 是 Elastic 公司旗下的一系列软件总称,包括 Elasticsearch、Logstash、Kibana 和 Beats。Elasticsearch 是一个分布式搜索引擎,负责数据的存储、查询,支持高并发的写入与查询;Logstash 是动态数据收集管道,可以进行数据的清洗、格式化等处理;Kibana 是基于 Elasticsearch 的数据可视化平台,提供种类丰富的图表来呈现数据;Beats 通常部署在生产环境下,扫描日志文件并向 Elasticsearch 或 Logstash 发送数据,在本文中我们使用 FileBeat。


Elastic Stack 的应用非常广泛,常见的有日志管理与分析、指标分析、性能监测、应用搜索等。本篇文章中我们借助腾讯云的 Elasticsearch、使用 Elastic Stack 搭建自动化流转过程的监控与统计系统。

准备工作

  • 日志消息协议


前边提到,Logstash 是可以进行数据处理的,所以对于日志文件的格式并没有要求,只需要后期在 Logstash 处借助 grok 进行格式化即可。方便起见,在本次使用中我们统一了日志消息协议,并统一使用 json 格式单独存储,因此省去了 Logstash 处的格式化操作。



图 1. 自动化流转日志消息协议


图 1 为我们定义的日志协议,其中 log_type 字段用于在 Elasticsearch 中建立索引(相当于我们熟悉的数据表),phase、finish_time 是我们后期监控与统计主要的划分维度,miles 是我们监控的指标。其他的一些字段是我们业务中会使用到的信息,主要用于后期统计使用。


  • 日志获取方式


在我们的使用中,日志的产生源有两大类:已完成开发的和正在进行开发的。对于前者,为了避免重新开发带来的工作量,我们采取定时扫库的方式“自给自足”的产生日志消息;对于后者,我们要求开发根据上述日志消息协议生产日志。两种日志都需要通过部署在环境内的 FileBeat 发送至 Logstash,再由 Logstash 发送至 Elasticsearch 中。

数据接入

  • 日志的准备


以 Python 为例,将日志消息 msg 使用 fp.write(json.dumps(msg))输出到文件中


  • Beats-Logstash-Elasticsearch 接入

  • Logstash 配置(conf)


input {  beats {      port => 8888      codec => "json"  }}
output { elasticsearch { hosts => ["<elasticsearch_ip>:<elasticsearch_port>"] index => "%{log_type}" } stdout { codec => rubydebug }}
复制代码


上述配置中,Logstash 监听本地 8888 端口、并使用 json 解码器对消息进行解析。对于解析后的消息,根据消息中的 log_type 字段发送至 Elasticsearch 对应的索引中,同时在命令行中输出。


  • Logstash 启动


./bin/logstash -c logstash.conf(可以使用 nohup)


  • FileBeat 配置(yml)


filebeat.inputs:- type: logenabled: truepaths:- /usr/local/app/wsd_cron_agent/script/logs/*.logoutput.logstash:hosts: ["<logstash_ip>:<logstash_port>"]
复制代码


上述配置中,FileBeat 定时扫描/usr/local/app/wsd_cron_agent/script/logs/路径下的 log 文件,发送至远端的 Logstash 处。


  • FileBeat 启动


./filebeat -e -c filebeat.yml(可以使用 nohup)


接下来 FileBeat 和 Logstash 就会自动将路径下的日志文件传输至 Elasticsearch 了。

Kibana 可视化

对于第一次接入的数据,首先要做的是创建索引,操作方法是[Management]->[Index Patterns]->[Create Index Pattern]->Index pattern 中输入索引名->单击[Create]



图 2. Kibana 建立索引


之后是使用 Kibana 自带的 visualize 进行数据的可视化,这里就是根据自身需求进行设置即可。可以在 Dashboard 中制作一个自定义的监控窗口,可以清楚直接的看到各个自动化流程的运转情况。



图 3. 地图中业流转 Dashboard

一些需要注意的问题 & 可以改进的地方

总的来说,Elastic Stack 搭建日志分析系统是非常简单、方便的,不过需要注意以下几点:


  • Elasticsearch 是一种非关系型数据库,不能做连表查询操作,因此必须将所有信息都放在一条消息/一例数据中

  • 请避免重复日志消息的产生

  • 目前得到的消息是腾讯云在和 Elastic 官方谈合作,之后会有一些插件(如报警功能)加入,使得监控和分析功能更加强大


由于之前没有接触过 Elastic Stack,所以也是磕磕碰碰的做了一些尝试,一些地方为了避免出错做了简化,之后可以再进一步优化以提升性能:


  • 需要单独产生日志消息,对于开发不够方便;可以考虑在 Logstash 出增加 grok 操作对日志进行格式化后再送入 Elasticsearch

  • FileBeat 和 Logstash 的负载均衡存在进一步提升的可能


本文转载自公众号云加社区(ID:QcloudCommunity)。


原文链接:


https://mp.weixin.qq.com/s/G473oMCOldT6wFtjqM6A3w


2019-11-07 18:141685

评论

发布
暂无评论
发现更多内容

低代码平台:国内十大低代码开发平台排名

优秀

低代码 低代码平台

作为CTO,你还能忍受公司内部监控系统的无限增殖吗?

可观测技术

监控

文旅营销的艺术与技术,在鲸鸿动能合而为一

脑极体

AI

企业数字化转型:低代码开发平台模式探索与实践

不在线第一只蜗牛

低代码 数字化 数字转型

第54期|GPTSecurity周报

云起无垠

新三顾茅庐:大型政企为何选择「混合云」!

白洞计划

云计算

你真的完全理解 Logistic 回归算法了吗

不在线第一只蜗牛

人工智能 数据挖掘 逻辑回归

Python高频面试题解析公开课

霍格沃兹测试开发学社

软件测试学习笔记丨Flask操作数据库一对多操作

测试人

软件测试

使用 Postman 变量的入门指南

Liam

程序员 后端 变量 Postman API

为什么观测云选择持续输出最佳实践

可观测技术

可观测性

Flink⼤状态作业调优实践指南:Datastream 作业篇

Apache Flink

大数据 flink Datastream

云手机海外版可以用来运营TikTok吗?

Ogcloud

云手机 海外云手机 tiktok云手机 tiktok运营 云手机推荐

Databend 开源周报第 147 期

Databend

Dynatrace仅是APM,你需要的是全方位的监控观测平台

可观测技术

监控

李尔将收购西班牙自动化和智能公司WIP Industrial Automation

财见

一文讲清楚精益数据方法论在数据治理中的应用

神州数码

精益数据 精益数据方法论

海外云手机对比真实手机有什么特点?

Ogcloud

云手机 海外云手机 云手机海外版 海外云手机推荐

基于Elastic Stack的日志分析系统_文化 & 方法_王政飞_InfoQ精选文章