写点什么

《Spotify 的入云之旅》系列之一——事件传输系统

  • 2016-05-02
  • 本文字数:3259 字

    阅读完需:约 11 分钟

写在之前

当 Spotify 的用户打开客户端听歌或者搜索音乐人,用户的任何一个触发的事件都会传送回 Spotify 的服务器。事件传输系统(也即,日志收集系统)是个有趣的项目,确保全球用户使用 Spotify 客户端所产生的事件都完全、安全的发送到数据中心。在本系列文章中,将讲述 Spotify 在这方面所做过的工作,而且会详细解说 Spotify 新的事件传输系统架构,并回答“为什么 Spotify 会基于 Google 云平台管理建立自己的新系统?”。

在本文章中,首先会阐述当前事件传输系统是如何工作,并分享一些在此架构下的实践经验;在下篇文章里,将描述新事件传输系统的架构设计,更进一步的,解释 Spotify 为什么会选择 Google 云平台的 Cloud Pub/Sub 服务作为所有事件的传输机制;在第三篇,将展示 Spotify 公司如何消费从 Google 的 DataFlow 订阅的事件数据,并分享 Spotify 技术团队采用这一方案的经验总结。

Spotify 的事件传输系统有很多用途,Spotify 大部分产品的设计策略是基于 A/B test 的结果,而这些 A/B test 得依赖于海量、精确的用户数据。Spotify 2015 年发布最受欢迎的特色功能之一是“Discover Weekly”播放列表,它是基于 Spotify 用户播放数据。“Year in music”、“Spotify Party”等其他特色的模块都是对用户播放数据进行数据分析的结果,同时 Soptify 的用户数据也是 Billboard 榜单的数据源。

事件传输系统是 Spotify 公司数据基础设施,它能保证数据以预期的延迟时间完整的传输,并且通过事先定义好的接口发送数据给开发者。用户数据是开发者事先埋点用户点击后产生的结构化数据。
Spotify 大部分事件都是响应用户在 Spotify 客户端的行为而触发的事件,事件在客户端发生后通过日志收集系统 syslog 发送到 Spotify 网关,这些数据通过事件传输系统时都会记录时间戳。为了能监测事件传输和事件传输的完整性,事件记录采用 syslog 时间戳而不是事件在客户端发生的时间戳,因为在事件传到 Spotify 服务器前是无法控制事件。

在 Spotify 公司,所有的用户数据需要发送到中心的 Hadoop 集群。Spotify 收集数据的服务器位于两个州的多个数据中心,但是数据中心之间的带宽是紧缺的资源,因此需要时刻监控带宽的占用情况。
数据接口是根据存储数据的 Hadoop 的位置和存储的格式来定义的,Soptify 所有通过事件传输服务传输的数据都是以 Avro 格式存储在 HDFS 上。传输的数据都是以小时来分桶,这么做的原因是系统遗留问题:Spotify 公司第一个事件传输系统是简单的用 scp 命令,然后按小时从所有的服务器上把 syslog 文件复制到 Hadoop 集群。现在 Spotify 公司所有的数据任务还是按小时分片的,这种接口形式预期将来一段时间还是不会变。

Spotify 的大部分数据读取任务是从小时桶里读取一次。一个 job 的输出会作为另外一个 job 的输入,这样形成一个长的转运 job 链。中间传输的 job 每小时传输一次,并且不做任何数据检查,即使在数据操作的过程中数据源发生了变化。一般出现小时桶里的数据发生变化需要手动去强制启动整个 job 链,相应的下游 job 就会按指定的时间运行。显然地,这是一个耗时耗力的处理过程,并且没有数据回滚的机制,因此需要一个事件传输服务来解决这个问题。数据完整性问题同时也带来的数据传输的延迟,你可以从 Google 的 Dataflow 论文里看到对数据完整性问题的有意思的看法。

当前使用的事件传输系统

系统设计

现在 Spotify 公司生产环境上使用的系统是基于 Kafka 0.7 版本。

(点击放大图像)

图1: 基于Kafka 0.7 点事件传输系统架构图

Spotify 线上运行的事件传输系统是按每小时文件抽象所设计的,它支持从服务器到 HDFS 的流式日志文件,包含事件数据。当所有的日志文件按小时传输到 HDFS 上的过程中会做一个日志格式转化,将原始的 Tab 键分隔的文本转化成 Avro 格式。

当线上正运行的事件传输系统上线时,Kafka 0.7 版本的 Kafka Broker 集群还未能实现稳定的持久化,这导致数据生产者、Kafka Syslog 生产者和 Hadoop 集群之间不能进行持久化。所以等到事件数据写入文件或者 HDFS 才能认为数据已经持久化了。

事件数据到达 Hadoop 集群并不能达到可靠的持久化,这里又面临一个问题:事件传输系统中 Hadoop 集群的单点问题,如果 Hadoop 集群宕机则事件传输系统即挂掉。为了解决这一问题,Spotify 公司确保所有收集事件数据的服务器上有足够多的磁盘空间,当 Hadoop 集群挂掉了,事件数据先缓存到服务器上,等 Hadoop 集群恢复后立即传输所有数据,这种传输策略到恢复时间主要受限于两个数据中心的带宽。

每个服务主机上都有一个 Producer 守护进程,它监控这日志文件并按行批量发送日志数据到 Kafka Syslog 消费者。Producer 并不会关注事件类型或者事件属性,它仅仅把区分日志文件的行数据,并且把所有数据发送到相同的 channel。这意味着所有的事件类型都包含在相同的日志文件里,并且发到同一个 channel 里。Producer 发送日志到 Consumer 后,需要等到 Consumer 成功的把日志持久化到 HDFS,并返回 ACK 给 Producer。当 Producer 收到成功的 ACK 后继续发送后面的日志。

Producer 上的事件数据传到 Consumer 需要经过 Kafka Brokers 和 Kafka Groupers。Kafka Brokers 是 Kafka 的标准组件,而 Kafka Groupers 是由 Spotify 工程师开发的,Grouper 消费本地数据中心的所有事件数据,并进行压缩、批量的发送到 Consumer 的单个 topic。

接下来是数据清洗(ETL)的过程,将 Tab 分隔的文本文件转化成 Avro 格式。这个 job 只是一个常规的 Hadoop MapReduce 任务,采用 Crunch 框架开发。
所有的 Producer 都会持续发送文件结束标记的检查点信息(checkpoint),当一个文件全部持久化到 Hadoop 集群后,Producer 会有且仅有发送一次文件结束标记。生命周期监控持续不断的去查询各数据中心的服务发现系统,探测在某个小时内服务器是否在线。为了确定某个小时的数据是否全部传送到数据中心,ETL 任务会去校验服务器文件的结束标记,如果 ETL 的 job 探测到数据未全部收到,它会延迟处理当前小时到数据。

为了最大化利用 mapper 和 reducer,ETL 的 job 需要知道如何共享输入数据,并且基于Consumer 传过来的事件数来优化共享。

总结

上述事件传输系统的设计主要缺点之一:本地Producer 需要确认发送的数据被持久化存储的数据中心位置。在美国西海岸的服务器,Producer 需要知道数据什么时间写入到London 数据中心。大部分情况下系统工作正常,一旦传输变慢将引起传输延迟并很难恢复。

对比这个问题,需要将转移点放在本地数据中心,这简化里Producer 的设计,只要数据中心的网络正常即可。

暂且放下这些问题,接下来计划构件一个事件传输系统能够可靠的每秒钟推送70 万个事件。重新设计这个事件传输系统同时给Spotify 团队一个机会提高软件的开发过程。

所有的事件一起发送到相同的channel,这会失去对不同QoS 的事件流的灵活管理。同时也会限制实时数据使用,因为任何实时的消费者需要过滤数据,仅仅获取有用的信息。

发送非结构化数据会带来不必要的延迟,因为清洗任务会带来额外的数据转移,当前运行的事件传输系统,清洗任务在处理非结构化数据会多好使大概30 分钟。如果发送的数据是结构化的Avro 格式,当被写入HDFS 会立即处理完。

跟踪处理的数据要按小时完整的数据会引起问题,例如,当机器挂掉,不能发送文件结束的标记。如果有一个缺失的文件结束标记,其他任务需要等到人为的处理才会继续工作。当机器的数量增长时,这个问题变得更明显。

下一步要做的

在Spotify 公司,传输的事件数据在不断的增长。同时系统的负载也在不断的增加,开始经历机器掉电,掉电掉数目开始警告大家,并且意识到系统在负载不断增加的情况下不能维持太久,见图2。

(点击放大图像)

图2

不幸的是,当前线上的事件传输系统已不能再通过迭代开发的方式得到提高了。留在前面唯一能解决问题的方法是重写事件传输系统。


感谢杜小芳对本文的策划和审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-05-02 17:451663
用户头像

发布了 43 篇内容, 共 28.7 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

浅谈Android热更新的前因后果 _ Android ,Android面试基础知识

android 程序员 移动开发

浅谈-Android-Handler,h5移动端开发面试题

android 程序员 移动开发

深入分析ConstraintLayout的原理及应用场景,万字总结

android 程序员 移动开发

深入学习-Gradle-自动化构建技术(六)Gradle-插件平台化框架-ByteX-探秘之旅

android 程序员 移动开发

浅谈ConcurrentHashMap,2021大厂Android面试题精选

android 程序员 移动开发

深入探索编译插桩技术(四、ASM 探秘,二本学渣考研失败

android 程序员 移动开发

深入理解AsyncTask的工作原理,成为阿里P7Android架构师到底有多难

android 程序员 移动开发

深入解析Android的StateListDrawable,项目实战

android 程序员 移动开发

深入并发原理和大厂面试(二),kotlin协程的理解

android 程序员 移动开发

深入理解Flutter动画原理,一个月成功收割腾讯、阿里、字节offer

android 程序员 移动开发

深度认识单例模式;在Android源码中的应用,华为Android面试真题解析

android 程序员 移动开发

没有对象怎么面向对象编程呢?真让人头秃!,android音视频编解码

android 程序员 移动开发

深入探索 Android 网络优化(三、网络优化篇,flutter页面跳转卡

android 程序员 移动开发

深度探索 Gradle 自动化构建技术(四、自定义 Gradle 插件

android 程序员 移动开发

渣本转岗,从Java到Android,这一年我经历了太多太多,移动开发者大会

android 程序员 移动开发

滴滴国际化项目 Android 端演进,一个小例子彻底搞懂Android的MVP模式到底是什么

android 程序员 移动开发

没想到位图算法在Android RecyclerView中还可以这样应用!

android 程序员 移动开发

渣本安卓客户端Android秋招总结(重排了字号),android项目实战手机安全卫士

android 程序员 移动开发

滴滴开源DRouter:一款高效的Android路由框架,androidui开发工具

android 程序员 移动开发

深入浅出Android性能调优【全面深入易理解】,来一份全面的面试宝典练练手

android 程序员 移动开发

深入理解 Activty 加载速度优化,android开发实战-记账本清风紫雪

android 程序员 移动开发

渣渣二本的辛酸面试之路:从深圳到杭州,从外包到蚂蚁金服

android 程序员 移动开发

满足你各种姿势的最美Android开源日历,android音频

android 程序员 移动开发

注意-跳槽必看啊!2020BATJZ大厂面筋集合!(建议收藏),android开发网上购物app

android 程序员 移动开发

某 Android 大牛 “凡尔赛”,Android-Camera内存问题剖析

android 程序员 移动开发

泛型使用到原理,2020-2021阿里巴巴安卓面试真题解析

android 程序员 移动开发

深入解析Android-Studio中Gradle依赖,flutter扫描二维码

android 程序员 移动开发

滴滴DoKit Android核心原理揭秘之函数耗时,app架构图怎么做

android 程序员 移动开发

漫谈MVVM(1)ViewModel_DataBinding核心原理,kotlin开发安卓游戏

android 程序员 移动开发

Vue进阶(幺伍捌):vue组包 CssSyntaxError unclosed bracket 错误解决方法

No Silver Bullet

Vue 11月日更

来自程序员的感叹:我怎么就没有阿里,腾讯,安卓内存监控悬浮窗

android 程序员 移动开发

《Spotify的入云之旅》系列之一——事件传输系统_语言 & 开发_侠天_InfoQ精选文章