写点什么

新的 Dataproc 可选组件支持 Apache Flink 和 Docker

Roderick Yao

  • 2020-11-03
  • 本文字数:2445 字

    阅读完需:约 8 分钟

新的 Dataproc 可选组件支持 Apache Flink 和 Docker

Google Cloud 的 Dataproc 让您能够以更简便、更经济的方式来基于 Google Cloud 运行原生 Apache Spark 和 Hadoop 集群。在本文中,我们将介绍在 Dataproc 的 Component Exchange 中提供的最新可选组件:Docker 和 Apache Flink。

Dataproc 中的 Docker 容器

Docker 是一种广泛使用的容器技术。由于它现在是 Dataproc 可选组件,Docker 守护进程 (daemon) 现在可被安装到 Dataproc 集群的每个节点。这将使您能够安装容器化应用程序,并且在集群中轻松地与 Hadoop 集群交互。


此外,Docker 对于支持以下这些功能也至关重要:


1.通过 YARN 运行容器


2.可移植 Apache Beam 作业


在 YARN 中运行容器使您能够单独管理您的 YARN 应用程序的依赖性,并且允许您在 YARN 中创建容器化的服务。可移植 Apache Beam 将作业打包到 Docker 容器,并将其提交至 Flink 集群。了解有关 Beam 可移植性的更多信息


除了默认的 Docker registry,还可对 Docker 可选组件进行配置以使用 Google Container Registry。这使您能够使用由您的组织管理的容器镜像。


以下是利用 Docker 可选组件创建 Dataproc 集群的示例:


gcloud beta dataproc clusters create <cluster-name> \  --optional-components=DOCKER \  --image-version=1.5
复制代码


当您运行 Docker 应用程序时,使用 gcplogs 驱动程序,日志将被传至 Cloud Logging。


如果您的应用程序不依赖任何 Hadoop 服务,核实 Kubernetes 和 Google Kubernetes Engine 是否以原生方式运行容器。要了解有关 Dataproc 使用的更多信息,请参阅我们的相关文档

基于 Dataproc 的 Apache Flink

在流分析技术中,Apache Beam 和 Apache Flink 更加出色。Apache Flink 是一个基于有状态计算的分布式处理引擎。Apache Beam 是定义批处理和流处理管道的统一模式。使用 Apache Flink 作为扩展引擎,除了 Google 的 Cloud Dataflow 服务,您还可以在 Dataproc 中运行 Apache Beam 作业。


Flink 以及在 Flink 中运行 Beam 适合大规模连续作业,可提供:


  • 支持批处理和数据流程序的流优先运行环境

  • 同时支持非常高的吞吐量和低事件延迟的运行环境

  • 具有精确单次处理保证的容错

  • 流程序中的自然背压 (back-pressure)

  • 自定义内存管理以实现在内存和核外数据处理算法之间高效、稳健的切换

  • 与 YARN 以及 Apache Hadoop 生态系统的其他组件集成


Google Cloud 的 Dataproc 团队最近宣布 Flink Operator on Kubernetes 现已可用。它允许您在 Kubernetes 中运行 Apache Flink 作业,具有减少平台依赖性和产生更好的硬件效率的优势。


基本 Flink 概念


Flink 集群包括 Flink JobManager 以及一组 Flink TaskManager。与 YARN 之类的其他分布式系统中的类似角色相似,JobManager 的“责任”包括接受作业、管理资源以及监控作业等。TaskManager 负责运行实际任务。


在 Dataproc 中运行 Flink 作业时,我们将 YARN 用作 Flink 的资源管理器。您可以以两种方式运行 Flink 作业:作业集群和会话集群。对于作业集群,YARN 将为作业创建 JobManager 和 TaskManagers,并且将在作业完成时销毁集群。对于会话集群,YARN 将创建 JobManager 和几个 TaskManager。集群可服务多个作业直至被用户关闭。


如何利用 Flink 创建集群


使用以下命令作为开始:


gcloud beta dataproc clusters create <cluster-name> \  --optional-components=FLINK \  --image-version=1.5
复制代码


如何运行 Flink 作业


在带有 Flink 的 Dataproc 集群启动后,您可以使用 Flink 作业集群直接将您的 Flink 作业提交至 YARN。接受作业后,Flink 将在 YARN 中为此作业启动 JobManager 和任务槽。Flink 作业将在 YARN 集群中运行,直至完成。然后,将关闭所创建的 JobManager。作业日志将在常规 YARN 日志中提供。尝试此命令以运行一个字数统计示例:


  HADOOP_CLASSPATH=`hadoop classpath` flink run -m yarn-cluster /usr/lib/flink/examples/batch/WordCount.jar
复制代码


默认情况下,Dataproc 集群将不启动 Flink 会话集群。相反,Dataproc 将创建脚本“/usr/bin/flink-yarn-daemon”,该脚本将启动 Flink 会话。


如果您要在 Dataproc 创建时启动 Flink 会话,使用 metadata 关键词来允许启动:


  gcloud dataproc clusters create <cluster-name> \  --optional-components=FLINK \   --image-version=1.5 \  --metadata flink-start-yarn-session=true
复制代码


如果您要在 Dataproc 创建后启动 Flink 会话,可在主节点运行下列命令:


  $ . /usr/bin/flink-yarn-daemon
复制代码


向该会话集群提交作业。您需要获得 Flink JobManager URL:


  HADOOP_CLASSPATH=`hadoop classpath` flink run -m <JOB_MANAGER_HOSTNAME>:<REST_API_PORT> /usr/lib/flink/examples/batch/WordCount.jar
复制代码


如何运行 Java Beam 作业


运行以 Java 编写的 Apache Beam 作业非常简单。无需额外的配置。只要您将 Beam 作业打包为 JAR 文件,不需要进行任何配置即可在 Flink 中运行 Beam。以下是您可以使用的命令:


 $ mvn package -Pflink-runner$ bin/flink run -c org.apache.beam.examples.WordCount /path/to/your.jar--runner=FlinkRunner --other-parameters
复制代码


如何运行以 Python 编写的 Python Beam 作业


以 Python 编写的 Beam 作业使用不同的执行模式。要基于 Dataproc 在 Flink 中运行它们,您还需要启用 Docker 可选组件。以下是创建集群的示例:


  gcloud dataproc clusters create <cluster-name> \  --optional-components=FLINK,DOCKER
复制代码


您还需要安装 Beam 所必需的 Python 库,例如,apache_beam 和 apache_beam[gcp]。您可以传递一个 Flink 主 URL,让它在会话集群中运行。如果您未传递 URL,需要使用作业集群模式来运行此作业:


  import apache_beam as beamfrom apache_beam.options.pipeline_options import PipelineOptionsoptions = PipelineOptions([  "--runner=FlinkRunner",  "--flink_version=1.9",  "--flink_master=localhost:8081",  "--environment_type=DOCKER"])with beam.Pipeline(options=options) as p:  ...
复制代码


编写 Python 作业后,只需运行它以提交:


  $ python wordcount.py
复制代码


2020-11-03 14:10838

评论

发布
暂无评论
发现更多内容

面试突击29:说一下线程池7个参数的含义?

王磊

Java 面试 java面试

基于 Nebula Graph 构建图学习能力

NebulaGraph

数据库 开源 分布式图数据库 机器学习数据库

Java最最基础入门知识总结回顾

逆锋起笔

Java java面试 javase 3月月更

低代码实现探索(三十六)表达式组件—基础组件的组件

零道云-混合式低代码平台

华云数据加入龙蜥社区,推动开源产业快速有序成长

OpenAnolis小助手

云计算 Linux 开源 操作系统 国产

量子时代已来,与时代接轨,从这本书开始!

博文视点Broadview

15张图呈现数据库事务背后的并发原理

华为云开发者联盟

数据库 事务 并发 隔离

华为云携手甘肃省医疗保障局,以数字科技为智慧医疗注入新动能

华为云数据库小助手

华为云数据库 华为云DRS 智慧医疗

设计模式:今天你设计了吗?

SFLYQ

设计模式 服务器端开发 后端技术

浅析人脸识别算法及其应用

得物技术

机器学习 算法 人脸识别 视觉 人脸

Android技术分享| anyLive 开源项目

anyRTC开发者

android 音视频 开源项目 移动开发 视频直播

AI提取图片里包含的文字信息-解决文字无法复制的痛点

DS小龙哥

3月月更

论CTO的作用

hongfei

项目管理 个人提升 工程管理

搭建 Restful Web 服务

码语者

REST API

今天直播:datop——用在冷热内存识别和跨 numa 访存有多优秀?

OpenAnolis小助手

Linux 开源 技术直播

iuap助力明日控股打造大宗贸易业财一体化中台

用友BIP

用友 用友iuap

诚邀参与 | OpenHarmony校园极客秀征文活动

OpenHarmony开发者

极客 OpenHarmony 征文活动

【技术分享】猪八戒网DevOps之Java组件安全检测

八戒技术团队

Java DevOps 安全检测

阿里开源 支持10万亿模型的自研分布式训练框架EPL(Easy Parallel Library)

阿里云大数据AI技术

深度学习 开源 分布式 框架

如何设置Perforce类型映射(P4类型映射)

龙智—DevSecOps解决方案

版本控制 游戏开发 二进制文件 游戏引擎 虚拟引擎

WhiteSource SAST:下一代应用程序安全

龙智—DevSecOps解决方案

静态应用安全测试 SAST

我要跳槽了!

IC男奋斗史

职业规划 芯片行业思考

Python从ECS内网拉取OSS数据

梦想橡皮擦

3月月更

天翼云SD-WAN斩获首批“SD-WAN 2.0 SASE”权威认证

天翼云开发者社区

SD-WAN

Apsara Stack 技术百科|云+应用一体化混合云全景智能化监控平台

科技互联网 企业数字化转型 混合云技术 混合云架构

听见“SHE”说丨OpenHarmony Ladies不被定义的“AWESOME”

OpenHarmony开发者

OpenHarmony 热门活动 女性力量

极光笔记 | 基于Robotframework框架进行服务端SDK的自动化(C++版本)

极光JIGUANG

c++

上手测试GaussDB(for Redis) 和开源 Redis,只为推荐质优价廉的Redis

华为云开发者联盟

数据库 redis 开源 GaussDB(for Redis) 开源Redis

使用AppleScript批量删除Mac中的信息

CRMEB

使用 Docker 一键启动环境安装 ModStart

ModStart开源

一文看懂JVM运行时内存分布

黄林晴

JVM

新的 Dataproc 可选组件支持 Apache Flink 和 Docker_文化 & 方法_InfoQ精选文章